File size: 21,921 Bytes
c13a105 705bdb0 c13a105 02e5ec9 c13a105 705bdb0 02e5ec9 705bdb0 02e5ec9 2a44ac5 705bdb0 2a44ac5 c13a105 705bdb0 c13a105 2a44ac5 c13a105 02e5ec9 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 02e5ec9 e4a73df d620032 e4a73df d620032 e4a73df d620032 e4a73df d620032 e4a73df 02e5ec9 c13a105 02e5ec9 c13a105 705bdb0 c13a105 2a44ac5 c13a105 705bdb0 c13a105 705bdb0 c13a105 705bdb0 c13a105 705bdb0 c13a105 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 02e5ec9 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 705bdb0 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 705bdb0 c13a105 705bdb0 c13a105 2a44ac5 c13a105 705bdb0 c13a105 705bdb0 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 02e5ec9 2a44ac5 c13a105 705bdb0 c13a105 705bdb0 c13a105 d620032 c13a105 2a44ac5 02e5ec9 2a44ac5 02e5ec9 e4a73df d620032 e4a73df c13a105 2a44ac5 705bdb0 2a44ac5 c13a105 2a44ac5 c13a105 705bdb0 c13a105 02e5ec9 c13a105 2a44ac5 705bdb0 2a44ac5 c13a105 705bdb0 c13a105 705bdb0 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 705bdb0 c13a105 705bdb0 c13a105 02e5ec9 c13a105 02e5ec9 c13a105 705bdb0 c13a105 838a48c 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 705bdb0 c13a105 2a44ac5 c13a105 02e5ec9 2a44ac5 c13a105 2a44ac5 705bdb0 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 02e5ec9 33fad44 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 705bdb0 2a44ac5 c13a105 2a44ac5 c13a105 705bdb0 2a44ac5 c13a105 705bdb0 2a44ac5 02e5ec9 2a44ac5 705bdb0 2a44ac5 c13a105 2a44ac5 02e5ec9 2a44ac5 705bdb0 02e5ec9 2a44ac5 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 705bdb0 c13a105 2a44ac5 c13a105 02e5ec9 c13a105 02e5ec9 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 2a44ac5 c13a105 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 |
"""
OmniMind Orchestrator - Main Gradio Application
The World's First Self-Evolving Multi-Agent MCP Ecosystem
Competition Entry for MCP's 1st Birthday Hackathon
Track 2: MCP in Action (Enterprise Category)
Sponsor Integrations:
- Google Gemini: Multi-model routing with Gemini 2.0 Flash
- Modal: Dynamic MCP deployment
- LlamaIndex: Enterprise knowledge RAG
- ElevenLabs: Voice-first interface
- Blaxel: Agent visualization
"""
import os
import sys
import json
import zipfile
from pathlib import Path
from typing import Dict, Any, Optional, Tuple, AsyncGenerator
from datetime import datetime
import gradio as gr
import plotly.graph_objects as go
import networkx as nx
# Add project root to path
sys.path.insert(0, str(Path(__file__).parent))
from core.model_router import router, TaskType
from mcp_gen.generator import generator
from deployments.modal_deployer import deployer
from core.knowledge_engine import knowledge
from ui.voice_interface import voice
from dotenv import load_dotenv
load_dotenv()
# ============================================================================
# Helpers
# ============================================================================
def to_jsonable(obj: Any) -> Any:
"""Recursively convert objects to JSON-serializable equivalents."""
if isinstance(obj, Path):
return str(obj)
if isinstance(obj, datetime):
return obj.isoformat()
if isinstance(obj, dict):
return {k: to_jsonable(v) for k, v in obj.items()}
if isinstance(obj, (list, tuple, set)):
return [to_jsonable(v) for v in obj]
return obj
def create_download_zip(server_metadata: Dict[str, Any]) -> Optional[str]:
"""
Create a ZIP file of the generated MCP server for download.
Returns:
Path to the ZIP file as a string, or None if creation fails.
"""
try:
server_dir = Path(server_metadata["directory"])
server_id = server_metadata["server_id"]
zip_path = server_dir.parent / f"{server_id}.zip"
zip_path.parent.mkdir(parents=True, exist_ok=True)
with zipfile.ZipFile(zip_path, "w", zipfile.ZIP_DEFLATED) as zipf:
for file_path in server_dir.rglob("*"):
if file_path.is_file():
arcname = file_path.relative_to(server_dir.parent)
zipf.write(file_path, arcname)
print(f"[ZIP] Created MCP archive at {zip_path}")
return str(zip_path)
except Exception as e:
print(f"[ERROR] Failed to create ZIP: {e}")
return None
def push_zip_to_space_repo(zip_path: Path) -> Optional[str]:
"""
Stub for Hub upload.
We intentionally DO NOT commit to the Space repository from inside
the running app, because that triggers an automatic redeploy and
causes the UI to refresh mid-run.
Workflow for the hackathon:
- Use the **Download Generated MCP Server** button.
- Then manually upload the ZIP to generated_mcps/ in the Files tab
if you want it stored on the Hub.
Returns:
Always None (no automatic Hub URL).
"""
print(
"[HF] Auto-upload to Space repo is disabled to avoid self-redeploy.\n"
" Use the download button, then upload the ZIP manually to "
"generated_mcps/ in the Files tab if you want it on the Hub."
)
return None
# ============================================================================
# Agent Visualization (Blaxel Integration)
# ============================================================================
def create_agent_graph(agent_state: Dict[str, Any]) -> go.Figure:
"""
Create real-time agent decision graph using Plotly.
"""
G = nx.DiGraph()
nodes = agent_state.get("nodes", [])
edges = agent_state.get("edges", [])
for node in nodes:
G.add_node(node["id"], label=node["label"], type=node.get("type", "default"))
for edge in edges:
G.add_edge(edge["from"], edge["to"], label=edge.get("label", ""))
pos = nx.spring_layout(G, k=2, iterations=50)
edge_x, edge_y = [], []
for e in G.edges():
x0, y0 = pos[e[0]]
x1, y1 = pos[e[1]]
edge_x.extend([x0, x1, None])
edge_y.extend([y0, y1, None])
edge_trace = go.Scatter(
x=edge_x,
y=edge_y,
line=dict(width=2, color="#888"),
hoverinfo="none",
mode="lines",
)
node_x, node_y, node_text, node_colors = [], [], [], []
color_map = {
"planning": "#3B82F6",
"generating": "#10B981",
"deploying": "#F59E0B",
"executing": "#8B5CF6",
"completed": "#6B7280",
}
for n in G.nodes():
x, y = pos[n]
node_x.append(x)
node_y.append(y)
node_text.append(G.nodes[n].get("label", n))
node_type = G.nodes[n].get("type", "default")
node_colors.append(color_map.get(node_type, "#6B7280"))
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode="markers+text",
hoverinfo="text",
text=node_text,
textposition="top center",
marker=dict(size=30, color=node_colors, line=dict(width=2, color="white")),
)
fig = go.Figure(
data=[edge_trace, node_trace],
layout=go.Layout(
title=dict(text="π§ Agent Decision Graph (Real-Time)", font=dict(size=16)),
showlegend=False,
hovermode="closest",
margin=dict(b=0, l=0, r=0, t=40),
xaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
yaxis=dict(showgrid=False, zeroline=False, showticklabels=False),
plot_bgcolor="rgba(0,0,0,0)",
height=400,
),
)
return fig
# ============================================================================
# Core Agent Orchestration
# ============================================================================
async def orchestrate_task(
user_request: str,
use_voice: bool = False,
use_knowledge_base: bool = False,
) -> AsyncGenerator[Tuple[str, Optional[go.Figure], Dict[str, Any], Optional[str]], None]:
"""
Main orchestration function - the brain of OmniMind.
Yields:
(status_text, agent_graph, metadata, zip_path_for_download)
"""
output = "# π€ OmniMind Orchestrator\n\n"
output += f"**Request:** {user_request}\n\n"
output += "---\n\n"
agent_state = {
"nodes": [{"id": "start", "label": "User Request", "type": "planning"}],
"edges": [],
}
yield (output, create_agent_graph(agent_state), {}, None)
# Step 1: Analyze request
output += "## π§ Step 1: Analyzing Request\n\n"
yield (output, create_agent_graph(agent_state), {}, None)
analysis_prompt = f"""Analyze this user request and determine what needs to be done:
Request: {user_request}
Determine:
1. Can this be done with existing general capabilities? (yes/no)
2. Do we need to generate a custom MCP server? (yes/no)
3. If yes, what should the MCP do?
4. What data sources or APIs are needed?
Respond in JSON:
{{
"needs_custom_mcp": true/false,
"mcp_description": "what the MCP should do",
"complexity": "simple|medium|complex",
"estimated_tools_needed": 2,
"approach": "high-level approach to solve this"
}}
"""
analysis = await router.generate(
analysis_prompt,
task_type=TaskType.PLANNING,
temperature=0.3,
)
try:
analysis_data = json.loads(analysis["response"])
except Exception:
analysis_data = {
"needs_custom_mcp": True,
"mcp_description": user_request,
"complexity": "medium",
"estimated_tools_needed": 1,
"approach": "Generate custom MCP for this task",
}
output += f"**Analysis:** {analysis_data['approach']}\n\n"
output += f"**Needs Custom MCP:** {analysis_data['needs_custom_mcp']}\n\n"
agent_state["nodes"].append(
{"id": "analyze", "label": "Analysis", "type": "completed"}
)
agent_state["edges"].append({"from": "start", "to": "analyze"})
yield (output, create_agent_graph(agent_state), to_jsonable(analysis_data), None)
# Step 2: Knowledge base
context = None
if use_knowledge_base:
output += "## π Step 2: Querying Knowledge Base\n\n"
agent_state["nodes"].append(
{"id": "knowledge", "label": "Knowledge", "type": "executing"}
)
agent_state["edges"].append({"from": "analyze", "to": "knowledge"})
yield (output, create_agent_graph(agent_state), {}, None)
context = await knowledge.get_context_for_mcp_generation(user_request)
if context:
output += f"**Found relevant context:** {context[:200]}...\n\n"
else:
output += "**No relevant context found**\n\n"
agent_state["nodes"][-1]["type"] = "completed"
yield (
output,
create_agent_graph(agent_state),
{"has_context": bool(context)},
None,
)
# Step 3: Generate MCP
server_metadata: Optional[Dict[str, Any]] = None
zip_path: Optional[str] = None
if analysis_data.get("needs_custom_mcp", False):
output += "## βοΈ Step 3: Generating Custom MCP Server\n\n"
agent_state["nodes"].append(
{"id": "generate", "label": "Generate MCP", "type": "generating"}
)
agent_state["edges"].append({"from": "analyze", "to": "generate"})
yield (output, create_agent_graph(agent_state), {}, None)
output += f"**Task:** {analysis_data['mcp_description']}\n\n"
output += "π¨ Using Claude Sonnet for code generation...\n\n"
server_metadata = await generator.generate_mcp_server(
task_description=analysis_data["mcp_description"],
context={"user_context": context} if context else None,
)
output += f"β
**Generated:** {server_metadata['server_name']}\n"
output += (
f"**Tools:** {', '.join([t['name'] for t in server_metadata['tools']])}\n"
)
output += f"**Location:** `{server_metadata['directory']}`\n\n"
# Code preview
output += "### π Generated Code Preview\n\n```python\n"
try:
app_file = server_metadata["files"]["app"]
with open(app_file, "r", encoding="utf-8") as f:
lines = f.readlines()[:30]
output += "".join(lines)
if len(lines) >= 30:
output += "\n... (truncated - full code saved locally)\n"
except Exception as e:
output += f"# Code preview unavailable: {e}\n"
output += "```\n\n"
output += f"**Files saved to:** `{server_metadata['directory']}`\n\n"
# ZIP + (disabled) Hub upload
zip_path = create_download_zip(server_metadata)
if zip_path:
server_metadata["zip_path"] = zip_path
output += "π¦ **Download button updated below!**\n\n"
hub_url = push_zip_to_space_repo(Path(zip_path))
if hub_url:
server_metadata["hub_url"] = hub_url
output += f"π **Saved to Hub:** {hub_url}\n\n"
else:
output += (
"βΉοΈ Auto-upload to the Hub repo is disabled.\n"
" Use the download button, then upload the ZIP manually\n"
" to `generated_mcps/` in the Files tab if you want it stored.\n\n"
)
agent_state["nodes"][-1]["type"] = "completed"
yield (
output,
create_agent_graph(agent_state),
to_jsonable(server_metadata),
zip_path,
)
# Step 4: Deploy to Modal
output += "## π Step 4: Deploying to Modal\n\n"
agent_state["nodes"].append(
{"id": "deploy", "label": "Deploy", "type": "deploying"}
)
agent_state["edges"].append({"from": "generate", "to": "deploy"})
yield (output, create_agent_graph(agent_state), {}, zip_path)
deployment = await deployer.deploy_mcp_server(server_metadata)
if deployment.get("simulated"):
output += (
"β οΈ **Simulated deployment** (configure MODAL_TOKEN for real deployment)\n"
)
if deployment.get("status") == "failed":
output += (
f"β οΈ **Deployment skipped:** "
f"{deployment.get('error', 'Unknown error')}\n\n"
)
else:
output += f"**URL:** {deployment.get('modal_url', 'N/A')}\n"
output += f"**Status:** {deployment.get('status', 'unknown')}\n\n"
agent_state["nodes"][-1]["type"] = "completed"
yield (
output,
create_agent_graph(agent_state),
to_jsonable(deployment),
zip_path,
)
# Step 5: Final response
output += "## β¨ Step 5: Generating Response\n\n"
agent_state["nodes"].append(
{"id": "respond", "label": "Response", "type": "executing"}
)
if server_metadata:
agent_state["edges"].append({"from": "deploy", "to": "respond"})
else:
agent_state["edges"].append({"from": "analyze", "to": "respond"})
yield (output, create_agent_graph(agent_state), {}, zip_path)
response_prompt = f"""Based on the work done, provide a clear, professional response to the user.
Original request: {user_request}
What was done:
{json.dumps(analysis_data, indent=2)}
{f"Generated MCP: {server_metadata['server_name']}" if server_metadata else "No custom MCP needed"}
Provide a helpful response explaining what was accomplished and how the user can use it.
"""
final_response = await router.generate(
response_prompt,
task_type=TaskType.REASONING,
temperature=0.7,
)
output += final_response["response"] + "\n\n"
agent_state["nodes"][-1]["type"] = "completed"
yield (output, create_agent_graph(agent_state), {}, zip_path)
if use_voice and voice.client:
output += "\nπ **Generating voice response...**\n"
yield (output, create_agent_graph(agent_state), {}, zip_path)
output += "\n---\n\n"
output += "**Model Usage:**\n"
stats = router.get_usage_stats()
output += f"- Total Requests: {stats['total_requests']}\n"
output += f"- Total Cost: ${stats['total_cost']}\n"
output += f"- Claude: {stats['by_model']['claude']['requests']}\n"
output += f"- Gemini: {stats['by_model']['gemini']['requests']}\n"
output += f"- GPT-4: {stats['by_model']['gpt4']['requests']}\n"
yield (output, create_agent_graph(agent_state), to_jsonable(stats), zip_path)
# ============================================================================
# Gradio UI
# ============================================================================
def build_ui() -> gr.Blocks:
"""Build the Gradio interface."""
custom_css = """
.gradio-container {
font-family: 'Inter', -apple-system, BlinkMacSystemFont, sans-serif;
}
.main-header {
text-align: center;
padding: 2rem 0;
background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
color: white;
border-radius: 10px;
margin-bottom: 2rem;
}
"""
with gr.Blocks(title="OmniMind Orchestrator - MCP Hackathon") as app:
gr.HTML(f"<style>{custom_css}</style>")
gr.HTML(
"""
<div class="main-header">
<h1>π§ OmniMind Orchestrator</h1>
<p>The World's First Self-Evolving Multi-Agent MCP Ecosystem</p>
<p style="font-size: 0.9em; opacity: 0.9;">
Track 2 Submission - MCP's 1st Birthday Hackathon
</p>
</div>
"""
)
with gr.Row():
with gr.Column(scale=1):
gr.Markdown(
"""
### π― What is OmniMind?
OmniMind is the **first AI agent that creates other AI agents**.
It:
1. π§ Analyzes your request
2. βοΈ Generates custom MCP servers
3. π Deploys them to Modal
4. β
Executes your task
"""
)
user_input = gr.Textbox(
label="What do you need?",
placeholder="Example: Create a tool that monitors my competitor's pricing every hour",
lines=3,
)
with gr.Row():
use_voice = gr.Checkbox(label="π Voice Output", value=False)
use_kb = gr.Checkbox(label="π Use Knowledge Base", value=False)
submit_btn = gr.Button(
"π Let OmniMind Handle It", variant="primary"
)
gr.Markdown(
"""
### π‘ Try These Examples:
- "Create a tool that scrapes product prices from Amazon"
- "Build an API integration for Salesforce"
- "Generate a data analyzer for CSV files"
- "Make a tool that monitors website uptime"
"""
)
with gr.Column(scale=2):
output_md = gr.Markdown(
value="**Results will appear here**", label="Agent Output"
)
agent_graph = gr.Plot(label="π§ Agent Brain (Real-Time)")
download_file = gr.File(
label="π¦ Download Generated MCP Server", visible=False
)
with gr.Accordion("π Detailed Metadata", open=False):
metadata_json = gr.JSON(label="Execution Metadata")
with gr.Row():
with gr.Column():
gr.Markdown(
"""
### π Sponsor Integrations
- **Anthropic Claude**: Core reasoning engine
- **Google Gemini**: Multimodal capabilities
- **OpenAI GPT-4**: Planning and routing
- **Modal**: Serverless MCP deployment
- **LlamaIndex**: Enterprise knowledge RAG
- **ElevenLabs**: Voice interface
- **Blaxel**: Agent visualization
"""
)
with gr.Column():
gr.Markdown(
"""
### β¨ Innovation Highlights
1. **Self-Evolving Agent** β creates its own tools
2. **Multi-Model Intelligence** β best model for each task
3. **Infinite Extensibility** β not limited by fixed tool sets
4. **Enterprise-Ready** β clean, production-grade architecture
5. **Voice-First UX** β ideal for executives and operators
"""
)
with gr.Accordion("βΉοΈ About This Project", open=False):
gr.Markdown(
"""
## OmniMind Orchestrator
Track 2: MCP in Action (Enterprise Category)
This project demonstrates an agent that **generates and deploys its own MCP
servers on-demand** using Anthropic, OpenAI, Gemini, Modal, LlamaIndex,
ElevenLabs and more.
"""
)
async def handle_submit(request, voice_enabled, kb_enabled):
async for out_text, graph, meta, zip_path in orchestrate_task(
request, voice_enabled, kb_enabled
):
if zip_path:
yield (
out_text,
graph,
meta,
gr.update(value=zip_path, visible=True),
)
else:
yield (
out_text,
graph,
meta,
gr.update(value=None, visible=False),
)
submit_btn.click(
fn=handle_submit,
inputs=[user_input, use_voice, use_kb],
outputs=[output_md, agent_graph, metadata_json, download_file],
)
gr.Markdown(
"""
---
<div style="text-align: center; padding: 1rem; color: #666;">
π Built for MCP's 1st Birthday Hackathon | Hosted by Anthropic & Gradio
</div>
"""
)
return app
# ============================================================================
# Main Execution
# ============================================================================
if __name__ == "__main__":
print("=" * 60)
print("[AI] OmniMind Orchestrator")
print("=" * 60)
print()
print("[START] Starting Gradio application...")
print()
required_keys = {
"ANTHROPIC_API_KEY": "Claude Sonnet (required)",
"OPENAI_API_KEY": "GPT-4 & embeddings (required)",
"GOOGLE_API_KEY": "Gemini 2.0 (for $10K prize)",
}
optional_keys = {
"MODAL_TOKEN": "Modal deployment ($2.5K prize)",
"ELEVENLABS_API_KEY": "Voice interface ($2K + AirPods)",
"LLAMAINDEX_API_KEY": "LlamaIndex cloud ($1K prize)",
}
print("[OK] Required API Keys:")
for key, desc in required_keys.items():
status = "[CHECK]" if os.getenv(key) else "[X]"
print(f" {status} {key} - {desc}")
print()
print("[BONUS] Optional API Keys (for bonus prizes):")
for key, desc in optional_keys.items():
status = "[CHECK]" if os.getenv(key) else "[O]"
print(f" {status} {key} - {desc}")
print()
print("=" * 60)
print()
app = build_ui()
app.queue()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False,
show_error=True,
)
|