Upload 2 files
Browse files- core/knowledge_engine.py +148 -0
- core/model_router.py +363 -0
core/knowledge_engine.py
ADDED
|
@@ -0,0 +1,148 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
LlamaIndex Knowledge Engine - For $1,000 Prize
|
| 3 |
+
|
| 4 |
+
Enterprise RAG for connecting to company knowledge bases.
|
| 5 |
+
"""
|
| 6 |
+
|
| 7 |
+
import os
|
| 8 |
+
from typing import List, Dict, Any, Optional
|
| 9 |
+
from pathlib import Path
|
| 10 |
+
|
| 11 |
+
try:
|
| 12 |
+
from llama_index.core import (
|
| 13 |
+
VectorStoreIndex,
|
| 14 |
+
SimpleDirectoryReader,
|
| 15 |
+
StorageContext,
|
| 16 |
+
load_index_from_storage,
|
| 17 |
+
Settings
|
| 18 |
+
)
|
| 19 |
+
from llama_index.embeddings.openai import OpenAIEmbedding
|
| 20 |
+
from llama_index.llms.anthropic import Anthropic
|
| 21 |
+
from llama_index.vector_stores.chroma import ChromaVectorStore
|
| 22 |
+
import chromadb
|
| 23 |
+
LLAMAINDEX_AVAILABLE = True
|
| 24 |
+
except ImportError:
|
| 25 |
+
LLAMAINDEX_AVAILABLE = False
|
| 26 |
+
print("[WARNING] LlamaIndex not installed")
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
class KnowledgeEngine:
|
| 30 |
+
"""
|
| 31 |
+
Enterprise knowledge integration using LlamaIndex.
|
| 32 |
+
|
| 33 |
+
Prize Integration: LlamaIndex Category Award ($1,000)
|
| 34 |
+
- RAG for enterprise documents
|
| 35 |
+
- Multi-source knowledge integration
|
| 36 |
+
- Context-aware MCP generation
|
| 37 |
+
"""
|
| 38 |
+
|
| 39 |
+
def __init__(self, persist_dir: str = "./chroma_db"):
|
| 40 |
+
self.persist_dir = Path(persist_dir)
|
| 41 |
+
self.persist_dir.mkdir(parents=True, exist_ok=True)
|
| 42 |
+
|
| 43 |
+
if not LLAMAINDEX_AVAILABLE:
|
| 44 |
+
self.index = None
|
| 45 |
+
return
|
| 46 |
+
|
| 47 |
+
# Configure LlamaIndex settings
|
| 48 |
+
Settings.embed_model = OpenAIEmbedding(
|
| 49 |
+
api_key=os.getenv("OPENAI_API_KEY"),
|
| 50 |
+
model="text-embedding-3-small"
|
| 51 |
+
)
|
| 52 |
+
Settings.llm = Anthropic(
|
| 53 |
+
api_key=os.getenv("ANTHROPIC_API_KEY"),
|
| 54 |
+
model="claude-sonnet-4-20250514"
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
# Initialize ChromaDB
|
| 58 |
+
self.chroma_client = chromadb.PersistentClient(path=str(self.persist_dir))
|
| 59 |
+
self.chroma_collection = self.chroma_client.get_or_create_collection("omnimind_knowledge")
|
| 60 |
+
|
| 61 |
+
# Vector store
|
| 62 |
+
self.vector_store = ChromaVectorStore(chroma_collection=self.chroma_collection)
|
| 63 |
+
self.storage_context = StorageContext.from_defaults(vector_store=self.vector_store)
|
| 64 |
+
|
| 65 |
+
# Try to load existing index
|
| 66 |
+
try:
|
| 67 |
+
self.index = load_index_from_storage(self.storage_context)
|
| 68 |
+
print("[OK] Loaded existing knowledge base")
|
| 69 |
+
except:
|
| 70 |
+
self.index = None
|
| 71 |
+
print("[INFO] No existing knowledge base - will create on first document add")
|
| 72 |
+
|
| 73 |
+
async def add_documents(self, documents_path: str) -> Dict[str, Any]:
|
| 74 |
+
"""Add documents to the knowledge base"""
|
| 75 |
+
if not LLAMAINDEX_AVAILABLE:
|
| 76 |
+
return {"status": "unavailable", "message": "LlamaIndex not installed"}
|
| 77 |
+
|
| 78 |
+
reader = SimpleDirectoryReader(documents_path)
|
| 79 |
+
documents = reader.load_data()
|
| 80 |
+
|
| 81 |
+
if self.index is None:
|
| 82 |
+
self.index = VectorStoreIndex.from_documents(
|
| 83 |
+
documents,
|
| 84 |
+
storage_context=self.storage_context
|
| 85 |
+
)
|
| 86 |
+
else:
|
| 87 |
+
for doc in documents:
|
| 88 |
+
self.index.insert(doc)
|
| 89 |
+
|
| 90 |
+
self.index.storage_context.persist()
|
| 91 |
+
|
| 92 |
+
return {
|
| 93 |
+
"status": "success",
|
| 94 |
+
"documents_added": len(documents),
|
| 95 |
+
"total_documents": len(self.chroma_collection.get()["ids"])
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
async def query(self, question: str, top_k: int = 3) -> Dict[str, Any]:
|
| 99 |
+
"""Query the knowledge base"""
|
| 100 |
+
if not LLAMAINDEX_AVAILABLE or self.index is None:
|
| 101 |
+
return {
|
| 102 |
+
"status": "unavailable",
|
| 103 |
+
"answer": "Knowledge base not configured",
|
| 104 |
+
"sources": []
|
| 105 |
+
}
|
| 106 |
+
|
| 107 |
+
query_engine = self.index.as_query_engine(similarity_top_k=top_k)
|
| 108 |
+
response = query_engine.query(question)
|
| 109 |
+
|
| 110 |
+
return {
|
| 111 |
+
"status": "success",
|
| 112 |
+
"answer": str(response),
|
| 113 |
+
"sources": [
|
| 114 |
+
{
|
| 115 |
+
"text": node.node.text[:200] + "...",
|
| 116 |
+
"score": node.score
|
| 117 |
+
}
|
| 118 |
+
for node in response.source_nodes
|
| 119 |
+
]
|
| 120 |
+
}
|
| 121 |
+
|
| 122 |
+
async def get_context_for_mcp_generation(
|
| 123 |
+
self,
|
| 124 |
+
task_description: str
|
| 125 |
+
) -> Optional[str]:
|
| 126 |
+
"""
|
| 127 |
+
Get relevant context from knowledge base for MCP generation.
|
| 128 |
+
|
| 129 |
+
This makes MCPs context-aware - they can use company-specific info.
|
| 130 |
+
"""
|
| 131 |
+
if not LLAMAINDEX_AVAILABLE or self.index is None:
|
| 132 |
+
return None
|
| 133 |
+
|
| 134 |
+
result = await self.query(
|
| 135 |
+
f"Find information relevant to: {task_description}",
|
| 136 |
+
top_k=3
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
if result["status"] == "success":
|
| 140 |
+
context_parts = [result["answer"]]
|
| 141 |
+
context_parts.extend([s["text"] for s in result["sources"]])
|
| 142 |
+
return "\n\n".join(context_parts)
|
| 143 |
+
|
| 144 |
+
return None
|
| 145 |
+
|
| 146 |
+
|
| 147 |
+
# Global knowledge engine
|
| 148 |
+
knowledge = KnowledgeEngine()
|
core/model_router.py
ADDED
|
@@ -0,0 +1,363 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Multi-Model Router - Intelligent model selection for optimal performance
|
| 3 |
+
Integrates Claude, Gemini, and GPT-4 with automatic routing
|
| 4 |
+
"""
|
| 5 |
+
|
| 6 |
+
import os
|
| 7 |
+
from typing import Dict, Any, List, Optional, Literal
|
| 8 |
+
from enum import Enum
|
| 9 |
+
import asyncio
|
| 10 |
+
from dotenv import load_dotenv
|
| 11 |
+
from anthropic import AsyncAnthropic
|
| 12 |
+
from openai import AsyncOpenAI
|
| 13 |
+
import google.generativeai as genai
|
| 14 |
+
from langchain_anthropic import ChatAnthropic
|
| 15 |
+
from langchain_openai import ChatOpenAI
|
| 16 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 17 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 18 |
+
|
| 19 |
+
# Load environment variables before initializing clients
|
| 20 |
+
load_dotenv()
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class ModelType(Enum):
|
| 24 |
+
"""Available AI models"""
|
| 25 |
+
CLAUDE_SONNET = "claude-sonnet-4-20250514" # Best for reasoning, code generation
|
| 26 |
+
GEMINI_2_FLASH = "gemini-2.0-flash-exp" # Best for multimodal, speed
|
| 27 |
+
GPT4O_MINI = "gpt-4o-mini" # Best for planning, routing decisions
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
class TaskType(Enum):
|
| 31 |
+
"""Task types for intelligent routing"""
|
| 32 |
+
REASONING = "reasoning" # Complex logic, analysis
|
| 33 |
+
CODE_GEN = "code_generation" # MCP server generation
|
| 34 |
+
MULTIMODAL = "multimodal" # Images, audio, video
|
| 35 |
+
PLANNING = "planning" # Task breakdown, routing
|
| 36 |
+
FAST_QUERY = "fast_query" # Quick responses
|
| 37 |
+
VISION = "vision" # Image analysis
|
| 38 |
+
AUDIO = "audio" # Audio processing
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class MultiModelRouter:
|
| 42 |
+
"""
|
| 43 |
+
Intelligent multi-model router that selects the best AI model for each task.
|
| 44 |
+
|
| 45 |
+
Prize Integration:
|
| 46 |
+
- Google Gemini: $10K prize for multimodal capabilities
|
| 47 |
+
- Anthropic Claude: Core reasoning engine
|
| 48 |
+
- OpenAI GPT-4: Planning and routing
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
def __init__(self):
|
| 52 |
+
self.anthropic_key = os.getenv("ANTHROPIC_API_KEY")
|
| 53 |
+
self.openai_key = os.getenv("OPENAI_API_KEY")
|
| 54 |
+
self.google_key = os.getenv("GOOGLE_API_KEY")
|
| 55 |
+
|
| 56 |
+
# Initialize clients
|
| 57 |
+
self.anthropic_client = AsyncAnthropic(api_key=self.anthropic_key) if self.anthropic_key else None
|
| 58 |
+
self.openai_client = AsyncOpenAI(api_key=self.openai_key) if self.openai_key else None
|
| 59 |
+
|
| 60 |
+
if self.google_key:
|
| 61 |
+
genai.configure(api_key=self.google_key)
|
| 62 |
+
|
| 63 |
+
# LangChain clients for agent integration
|
| 64 |
+
self.claude_lc = ChatAnthropic(
|
| 65 |
+
model=ModelType.CLAUDE_SONNET.value,
|
| 66 |
+
api_key=self.anthropic_key,
|
| 67 |
+
temperature=0.7
|
| 68 |
+
) if self.anthropic_key else None
|
| 69 |
+
|
| 70 |
+
self.gpt_lc = ChatOpenAI(
|
| 71 |
+
model=ModelType.GPT4O_MINI.value,
|
| 72 |
+
api_key=self.openai_key,
|
| 73 |
+
temperature=0.7
|
| 74 |
+
) if self.openai_key else None
|
| 75 |
+
|
| 76 |
+
self.gemini_lc = ChatGoogleGenerativeAI(
|
| 77 |
+
model=ModelType.GEMINI_2_FLASH.value,
|
| 78 |
+
google_api_key=self.google_key,
|
| 79 |
+
temperature=0.7
|
| 80 |
+
) if self.google_key else None
|
| 81 |
+
|
| 82 |
+
# Routing rules: Task type -> Best model
|
| 83 |
+
self.routing_rules = {
|
| 84 |
+
TaskType.REASONING: ModelType.CLAUDE_SONNET,
|
| 85 |
+
TaskType.CODE_GEN: ModelType.CLAUDE_SONNET,
|
| 86 |
+
TaskType.MULTIMODAL: ModelType.GEMINI_2_FLASH,
|
| 87 |
+
TaskType.PLANNING: ModelType.GPT4O_MINI,
|
| 88 |
+
TaskType.FAST_QUERY: ModelType.GEMINI_2_FLASH,
|
| 89 |
+
TaskType.VISION: ModelType.GEMINI_2_FLASH,
|
| 90 |
+
TaskType.AUDIO: ModelType.GEMINI_2_FLASH,
|
| 91 |
+
}
|
| 92 |
+
|
| 93 |
+
# Cost tracking (per 1M tokens)
|
| 94 |
+
self.model_costs = {
|
| 95 |
+
ModelType.CLAUDE_SONNET: {"input": 3.0, "output": 15.0},
|
| 96 |
+
ModelType.GEMINI_2_FLASH: {"input": 0.0, "output": 0.0}, # Free tier
|
| 97 |
+
ModelType.GPT4O_MINI: {"input": 0.15, "output": 0.60},
|
| 98 |
+
}
|
| 99 |
+
|
| 100 |
+
self.usage_stats = {
|
| 101 |
+
"claude": {"requests": 0, "tokens": 0, "cost": 0.0},
|
| 102 |
+
"gemini": {"requests": 0, "tokens": 0, "cost": 0.0},
|
| 103 |
+
"gpt4": {"requests": 0, "tokens": 0, "cost": 0.0},
|
| 104 |
+
}
|
| 105 |
+
|
| 106 |
+
def select_model(self, task_type: TaskType, prefer_cost_efficient: bool = False) -> ModelType:
|
| 107 |
+
"""
|
| 108 |
+
Intelligently select the best model for a task.
|
| 109 |
+
|
| 110 |
+
Args:
|
| 111 |
+
task_type: Type of task to perform
|
| 112 |
+
prefer_cost_efficient: Prefer cheaper models when possible
|
| 113 |
+
|
| 114 |
+
Returns:
|
| 115 |
+
Selected model type
|
| 116 |
+
"""
|
| 117 |
+
base_model = self.routing_rules.get(task_type, ModelType.CLAUDE_SONNET)
|
| 118 |
+
|
| 119 |
+
# If cost-efficient mode, prefer Gemini (free tier) or GPT-4o-mini
|
| 120 |
+
if prefer_cost_efficient:
|
| 121 |
+
if task_type in [TaskType.MULTIMODAL, TaskType.FAST_QUERY, TaskType.VISION]:
|
| 122 |
+
return ModelType.GEMINI_2_FLASH
|
| 123 |
+
elif task_type == TaskType.PLANNING:
|
| 124 |
+
return ModelType.GPT4O_MINI
|
| 125 |
+
|
| 126 |
+
return base_model
|
| 127 |
+
|
| 128 |
+
async def generate(
|
| 129 |
+
self,
|
| 130 |
+
prompt: str,
|
| 131 |
+
task_type: TaskType = TaskType.REASONING,
|
| 132 |
+
system_prompt: Optional[str] = None,
|
| 133 |
+
max_tokens: int = 4000,
|
| 134 |
+
temperature: float = 0.7,
|
| 135 |
+
image_url: Optional[str] = None,
|
| 136 |
+
audio_data: Optional[bytes] = None,
|
| 137 |
+
stream: bool = False,
|
| 138 |
+
) -> Dict[str, Any]:
|
| 139 |
+
"""
|
| 140 |
+
Generate response using the best model for the task.
|
| 141 |
+
|
| 142 |
+
Args:
|
| 143 |
+
prompt: User prompt
|
| 144 |
+
task_type: Type of task
|
| 145 |
+
system_prompt: System instructions
|
| 146 |
+
max_tokens: Maximum response length
|
| 147 |
+
temperature: Creativity (0-1)
|
| 148 |
+
image_url: URL for image analysis (Gemini multimodal)
|
| 149 |
+
audio_data: Audio bytes for analysis (Gemini)
|
| 150 |
+
stream: Stream response tokens
|
| 151 |
+
|
| 152 |
+
Returns:
|
| 153 |
+
Dict with response, model used, tokens, cost
|
| 154 |
+
"""
|
| 155 |
+
model = self.select_model(task_type)
|
| 156 |
+
|
| 157 |
+
# Force Gemini for multimodal tasks
|
| 158 |
+
if image_url or audio_data:
|
| 159 |
+
model = ModelType.GEMINI_2_FLASH
|
| 160 |
+
|
| 161 |
+
try:
|
| 162 |
+
if model == ModelType.CLAUDE_SONNET:
|
| 163 |
+
return await self._generate_claude(prompt, system_prompt, max_tokens, temperature, stream)
|
| 164 |
+
elif model == ModelType.GEMINI_2_FLASH:
|
| 165 |
+
return await self._generate_gemini(prompt, system_prompt, max_tokens, temperature, image_url, audio_data)
|
| 166 |
+
elif model == ModelType.GPT4O_MINI:
|
| 167 |
+
return await self._generate_gpt(prompt, system_prompt, max_tokens, temperature, stream)
|
| 168 |
+
except Exception as e:
|
| 169 |
+
# Fallback to Claude if primary model fails
|
| 170 |
+
if model != ModelType.CLAUDE_SONNET:
|
| 171 |
+
return await self._generate_claude(prompt, system_prompt, max_tokens, temperature, stream)
|
| 172 |
+
raise e
|
| 173 |
+
|
| 174 |
+
async def _generate_claude(
|
| 175 |
+
self,
|
| 176 |
+
prompt: str,
|
| 177 |
+
system_prompt: Optional[str],
|
| 178 |
+
max_tokens: int,
|
| 179 |
+
temperature: float,
|
| 180 |
+
stream: bool
|
| 181 |
+
) -> Dict[str, Any]:
|
| 182 |
+
"""Generate using Claude Sonnet"""
|
| 183 |
+
if not self.anthropic_client:
|
| 184 |
+
raise ValueError("Anthropic API key not configured")
|
| 185 |
+
|
| 186 |
+
messages = [{"role": "user", "content": prompt}]
|
| 187 |
+
|
| 188 |
+
response = await self.anthropic_client.messages.create(
|
| 189 |
+
model=ModelType.CLAUDE_SONNET.value,
|
| 190 |
+
max_tokens=max_tokens,
|
| 191 |
+
temperature=temperature,
|
| 192 |
+
system=system_prompt or "You are a helpful AI assistant.",
|
| 193 |
+
messages=messages,
|
| 194 |
+
stream=stream
|
| 195 |
+
)
|
| 196 |
+
|
| 197 |
+
if stream:
|
| 198 |
+
return {"response": response, "model": "claude", "streaming": True}
|
| 199 |
+
|
| 200 |
+
content = response.content[0].text
|
| 201 |
+
input_tokens = response.usage.input_tokens
|
| 202 |
+
output_tokens = response.usage.output_tokens
|
| 203 |
+
cost = self._calculate_cost(ModelType.CLAUDE_SONNET, input_tokens, output_tokens)
|
| 204 |
+
|
| 205 |
+
# Update stats
|
| 206 |
+
self.usage_stats["claude"]["requests"] += 1
|
| 207 |
+
self.usage_stats["claude"]["tokens"] += input_tokens + output_tokens
|
| 208 |
+
self.usage_stats["claude"]["cost"] += cost
|
| 209 |
+
|
| 210 |
+
return {
|
| 211 |
+
"response": content,
|
| 212 |
+
"model": "claude-sonnet-4",
|
| 213 |
+
"input_tokens": input_tokens,
|
| 214 |
+
"output_tokens": output_tokens,
|
| 215 |
+
"total_tokens": input_tokens + output_tokens,
|
| 216 |
+
"cost": cost,
|
| 217 |
+
"streaming": False
|
| 218 |
+
}
|
| 219 |
+
|
| 220 |
+
async def _generate_gemini(
|
| 221 |
+
self,
|
| 222 |
+
prompt: str,
|
| 223 |
+
system_prompt: Optional[str],
|
| 224 |
+
max_tokens: int,
|
| 225 |
+
temperature: float,
|
| 226 |
+
image_url: Optional[str] = None,
|
| 227 |
+
audio_data: Optional[bytes] = None
|
| 228 |
+
) -> Dict[str, Any]:
|
| 229 |
+
"""Generate using Gemini 2.0 Flash (multimodal support)"""
|
| 230 |
+
if not self.google_key:
|
| 231 |
+
raise ValueError("Google API key not configured")
|
| 232 |
+
|
| 233 |
+
model = genai.GenerativeModel(
|
| 234 |
+
ModelType.GEMINI_2_FLASH.value,
|
| 235 |
+
system_instruction=system_prompt
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Build multimodal content
|
| 239 |
+
content_parts = []
|
| 240 |
+
if image_url:
|
| 241 |
+
# For image analysis
|
| 242 |
+
import httpx
|
| 243 |
+
async with httpx.AsyncClient() as client:
|
| 244 |
+
img_response = await client.get(image_url)
|
| 245 |
+
img_data = img_response.content
|
| 246 |
+
content_parts.append({"mime_type": "image/jpeg", "data": img_data})
|
| 247 |
+
|
| 248 |
+
if audio_data:
|
| 249 |
+
content_parts.append({"mime_type": "audio/wav", "data": audio_data})
|
| 250 |
+
|
| 251 |
+
content_parts.append(prompt)
|
| 252 |
+
|
| 253 |
+
response = await model.generate_content_async(
|
| 254 |
+
content_parts,
|
| 255 |
+
generation_config=genai.GenerationConfig(
|
| 256 |
+
max_output_tokens=max_tokens,
|
| 257 |
+
temperature=temperature
|
| 258 |
+
)
|
| 259 |
+
)
|
| 260 |
+
|
| 261 |
+
content = response.text
|
| 262 |
+
|
| 263 |
+
# Gemini free tier - no cost tracking
|
| 264 |
+
self.usage_stats["gemini"]["requests"] += 1
|
| 265 |
+
|
| 266 |
+
return {
|
| 267 |
+
"response": content,
|
| 268 |
+
"model": "gemini-2.0-flash",
|
| 269 |
+
"input_tokens": 0, # Not provided in free tier
|
| 270 |
+
"output_tokens": 0,
|
| 271 |
+
"total_tokens": 0,
|
| 272 |
+
"cost": 0.0,
|
| 273 |
+
"streaming": False,
|
| 274 |
+
"multimodal": bool(image_url or audio_data)
|
| 275 |
+
}
|
| 276 |
+
|
| 277 |
+
async def _generate_gpt(
|
| 278 |
+
self,
|
| 279 |
+
prompt: str,
|
| 280 |
+
system_prompt: Optional[str],
|
| 281 |
+
max_tokens: int,
|
| 282 |
+
temperature: float,
|
| 283 |
+
stream: bool
|
| 284 |
+
) -> Dict[str, Any]:
|
| 285 |
+
"""Generate using GPT-4o-mini"""
|
| 286 |
+
if not self.openai_client:
|
| 287 |
+
raise ValueError("OpenAI API key not configured")
|
| 288 |
+
|
| 289 |
+
messages = [
|
| 290 |
+
{"role": "system", "content": system_prompt or "You are a helpful AI assistant."},
|
| 291 |
+
{"role": "user", "content": prompt}
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
response = await self.openai_client.chat.completions.create(
|
| 295 |
+
model=ModelType.GPT4O_MINI.value,
|
| 296 |
+
messages=messages,
|
| 297 |
+
max_tokens=max_tokens,
|
| 298 |
+
temperature=temperature,
|
| 299 |
+
stream=stream
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
if stream:
|
| 303 |
+
return {"response": response, "model": "gpt-4o-mini", "streaming": True}
|
| 304 |
+
|
| 305 |
+
content = response.choices[0].message.content
|
| 306 |
+
input_tokens = response.usage.prompt_tokens
|
| 307 |
+
output_tokens = response.usage.completion_tokens
|
| 308 |
+
cost = self._calculate_cost(ModelType.GPT4O_MINI, input_tokens, output_tokens)
|
| 309 |
+
|
| 310 |
+
# Update stats
|
| 311 |
+
self.usage_stats["gpt4"]["requests"] += 1
|
| 312 |
+
self.usage_stats["gpt4"]["tokens"] += input_tokens + output_tokens
|
| 313 |
+
self.usage_stats["gpt4"]["cost"] += cost
|
| 314 |
+
|
| 315 |
+
return {
|
| 316 |
+
"response": content,
|
| 317 |
+
"model": "gpt-4o-mini",
|
| 318 |
+
"input_tokens": input_tokens,
|
| 319 |
+
"output_tokens": output_tokens,
|
| 320 |
+
"total_tokens": input_tokens + output_tokens,
|
| 321 |
+
"cost": cost,
|
| 322 |
+
"streaming": False
|
| 323 |
+
}
|
| 324 |
+
|
| 325 |
+
def _calculate_cost(self, model: ModelType, input_tokens: int, output_tokens: int) -> float:
|
| 326 |
+
"""Calculate cost for API usage"""
|
| 327 |
+
costs = self.model_costs[model]
|
| 328 |
+
input_cost = (input_tokens / 1_000_000) * costs["input"]
|
| 329 |
+
output_cost = (output_tokens / 1_000_000) * costs["output"]
|
| 330 |
+
return input_cost + output_cost
|
| 331 |
+
|
| 332 |
+
def get_usage_stats(self) -> Dict[str, Any]:
|
| 333 |
+
"""Get usage statistics across all models"""
|
| 334 |
+
total_cost = sum(stats["cost"] for stats in self.usage_stats.values())
|
| 335 |
+
total_requests = sum(stats["requests"] for stats in self.usage_stats.values())
|
| 336 |
+
|
| 337 |
+
return {
|
| 338 |
+
"total_requests": total_requests,
|
| 339 |
+
"total_cost": round(total_cost, 4),
|
| 340 |
+
"by_model": self.usage_stats,
|
| 341 |
+
"cost_breakdown": {
|
| 342 |
+
"claude": round(self.usage_stats["claude"]["cost"], 4),
|
| 343 |
+
"gemini": round(self.usage_stats["gemini"]["cost"], 4),
|
| 344 |
+
"gpt4": round(self.usage_stats["gpt4"]["cost"], 4),
|
| 345 |
+
}
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
def get_langchain_model(self, task_type: TaskType):
|
| 349 |
+
"""Get LangChain-compatible model for agent integration"""
|
| 350 |
+
model = self.select_model(task_type)
|
| 351 |
+
|
| 352 |
+
if model == ModelType.CLAUDE_SONNET:
|
| 353 |
+
return self.claude_lc
|
| 354 |
+
elif model == ModelType.GEMINI_2_FLASH:
|
| 355 |
+
return self.gemini_lc
|
| 356 |
+
elif model == ModelType.GPT4O_MINI:
|
| 357 |
+
return self.gpt_lc
|
| 358 |
+
|
| 359 |
+
return self.claude_lc # Default fallback
|
| 360 |
+
|
| 361 |
+
|
| 362 |
+
# Global router instance
|
| 363 |
+
router = MultiModelRouter()
|