File size: 28,558 Bytes
6982f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 |
# TraceMind MCP Server - Technical Architecture
This document provides a deep technical dive into the TraceMind MCP Server architecture, implementation details, and deployment configuration.
## Table of Contents
- [System Overview](#system-overview)
- [Project Structure](#project-structure)
- [Core Components](#core-components)
- [MCP Protocol Implementation](#mcp-protocol-implementation)
- [Gemini Integration](#gemini-integration)
- [Data Flow](#data-flow)
- [Deployment Architecture](#deployment-architecture)
- [Development Workflow](#development-workflow)
- [Performance Considerations](#performance-considerations)
- [Security](#security)
---
## System Overview
TraceMind MCP Server is a Gradio-based MCP (Model Context Protocol) server that provides AI-powered analysis tools for agent evaluation data. It serves as the backend intelligence layer for the TraceMind ecosystem.
### Technology Stack
| Component | Technology | Version | Purpose |
|-----------|-----------|---------|---------|
| **Framework** | Gradio | 6.x | Native MCP support with `@gr.mcp.*` decorators |
| **AI Model** | Google Gemini | 2.5 Flash Lite | AI-powered analysis and insights |
| **Data Source** | HuggingFace Datasets | Latest | Load evaluation datasets |
| **Protocol** | MCP | 1.0 | Model Context Protocol for tool exposure |
| **Transport** | SSE | - | Server-Sent Events for real-time communication |
| **Deployment** | Docker | - | HuggingFace Spaces containerized deployment |
| **Language** | Python | 3.10+ | Core implementation |
### Architecture Diagram
```
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β MCP Clients (External) β
β - Claude Desktop β
β - VS Code (Continue, Cursor, Cline) β
β - TraceMind-AI (Track 2) β
ββββββββββββββββββ¬ββββββββββββββββββββββββββββββββββββββββββββββ
β
β MCP Protocol
β (SSE Transport)
β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β TraceMind MCP Server (HuggingFace Spaces) β
β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Gradio App (app.py) β β
β β - MCP Server Endpoint (mcp_server=True) β β
β β - Testing UI (Gradio Blocks) β β
β β - Configuration Management β β
β βββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ β
β β β
β β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β MCP Tools (mcp_tools.py) β β
β β - 11 Tools (@gr.mcp.tool()) β β
β β - 3 Resources (@gr.mcp.resource()) β β
β β - 3 Prompts (@gr.mcp.prompt()) β β
β βββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ β
β β β
β β β
β ββββββββββββββββββββββββββββββββββββββββββββββββββββββββ β
β β Gemini Client (gemini_client.py) β β
β β - API Authentication β β
β β - Prompt Engineering β β
β β - Response Parsing β β
β βββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ β
β β β
ββββββββββββββββββΌβββββββββββββββββββββββββββββββββββββββββββββββ
β
β
ββββββββββββββββββ
β External APIs β
β - Gemini API β
β - HF Datasets β
ββββββββββββββββββ
```
---
## Project Structure
```
TraceMind-mcp-server/
βββ app.py # Main entry point, Gradio UI
βββ mcp_tools.py # MCP tool implementations (11 tools + 3 resources + 3 prompts)
βββ gemini_client.py # Google Gemini API client
βββ requirements.txt # Python dependencies
βββ Dockerfile # Container configuration
βββ .env.example # Environment variable template
βββ .gitignore # Git ignore rules
βββ README.md # Project documentation
βββ DOCUMENTATION.md # Complete API reference
Total: 8 files (excluding docs)
Lines of Code: ~3,500 lines (breakdown below)
```
### File Sizes
| File | Lines | Purpose |
|------|-------|---------|
| `app.py` | ~1,200 | Gradio UI + MCP server setup + testing interface |
| `mcp_tools.py` | ~2,100 | All 17 MCP components (tools, resources, prompts) |
| `gemini_client.py` | ~200 | Gemini API integration |
| `requirements.txt` | ~20 | Dependencies |
| `Dockerfile` | ~30 | Deployment configuration |
---
## Core Components
### 1. app.py - Main Application
**Purpose**: Entry point for HuggingFace Spaces deployment, provides both MCP server and testing UI.
**Key Responsibilities**:
- Initialize Gradio app with `mcp_server=True`
- Create testing interface for all MCP tools
- Handle configuration (API keys, settings)
- Manage client connections
**Architecture**:
```python
# app.py structure
import gradio as gr
from gemini_client import GeminiClient
from mcp_tools import * # All tool implementations
# 1. Initialize Gemini client (with fallback)
default_gemini_client = GeminiClient()
# 2. Create Gradio UI for testing
def create_gradio_ui():
with gr.Blocks() as demo:
# Settings tab for API key configuration
# Tab for each MCP tool (11 tabs)
# Tab for testing resources
# Tab for testing prompts
# API documentation tab
return demo
# 3. Launch with MCP server enabled
if __name__ == "__main__":
demo = create_gradio_ui()
demo.launch(
mcp_server=True, # β Enables MCP endpoint
share=False,
server_name="0.0.0.0",
server_port=7860
)
```
**MCP Enablement**:
- `mcp_server=True` in `demo.launch()` automatically:
- Exposes `/gradio_api/mcp/sse` endpoint
- Discovers all `@gr.mcp.tool()`, `@gr.mcp.resource()`, `@gr.mcp.prompt()` decorated functions
- Generates MCP tool schemas from function signatures and docstrings
- Handles MCP protocol communication (SSE transport)
**Testing Interface**:
- **Settings Tab**: Configure Gemini API key and HF token
- **Tool Tabs** (11): One tab per tool for manual testing
- Input fields for all parameters
- Submit button
- Output display (Markdown or JSON)
- **Resources Tab**: Test resource URIs
- **Prompts Tab**: Test prompt templates
- **API Documentation Tab**: Generated from tool docstrings
---
### 2. mcp_tools.py - MCP Components
**Purpose**: Implements all 17 MCP components (11 tools + 3 resources + 3 prompts).
**Structure**:
```python
# mcp_tools.py structure
import gradio as gr
from gemini_client import GeminiClient
from datasets import load_dataset
# ============ TOOLS (11) ============
@gr.mcp.tool()
async def analyze_leaderboard(...) -> str:
"""Tool docstring (becomes MCP description)"""
# 1. Load data from HuggingFace
# 2. Process/filter data
# 3. Call Gemini for AI analysis
# 4. Return formatted response
pass
@gr.mcp.tool()
async def debug_trace(...) -> str:
"""Debug traces with AI assistance"""
pass
# ... (9 more tools)
# ============ RESOURCES (3) ============
@gr.mcp.resource()
def get_leaderboard_data(uri: str) -> str:
"""URI: leaderboard://{repo}"""
# Parse URI
# Load dataset
# Return raw JSON
pass
@gr.mcp.resource()
def get_trace_data(uri: str) -> str:
"""URI: trace://{trace_id}/{repo}"""
pass
@gr.mcp.resource()
def get_cost_data(uri: str) -> str:
"""URI: cost://model/{model_name}"""
pass
# ============ PROMPTS (3) ============
@gr.mcp.prompt()
def analysis_prompt(analysis_type: str, ...) -> str:
"""Generate analysis prompt templates"""
pass
@gr.mcp.prompt()
def debug_prompt(debug_type: str, ...) -> str:
"""Generate debug prompt templates"""
pass
@gr.mcp.prompt()
def optimization_prompt(optimization_goal: str, ...) -> str:
"""Generate optimization prompt templates"""
pass
```
**Design Patterns**:
1. **Decorator-Based Registration**:
```python
@gr.mcp.tool() # Gradio automatically registers as MCP tool
async def tool_name(...) -> str:
"""Docstring becomes tool description in MCP schema"""
pass
```
2. **Structured Docstrings**:
```python
"""
Brief one-line description.
Longer detailed description explaining purpose and behavior.
Args:
param1 (type): Description of param1
param2 (type): Description of param2. Default: value
Returns:
type: Description of return value
"""
```
Gradio parses this to generate MCP tool schema automatically.
3. **Error Handling**:
```python
try:
# Tool implementation
return result
except Exception as e:
return f"β **Error**: {str(e)}"
```
All errors returned as user-friendly strings.
4. **Async/Await**:
All tools are `async` for efficient I/O operations (API calls, dataset loading).
---
### 3. gemini_client.py - AI Integration
**Purpose**: Handles all interactions with Google Gemini 2.5 Flash Lite API.
**Key Features**:
- API authentication
- Prompt engineering for different analysis types
- Response parsing and formatting
- Error handling and retries
- Token optimization
**Class Structure**:
```python
class GeminiClient:
def __init__(self, api_key: str, model_name: str):
"""Initialize with API key and model"""
self.api_key = api_key
self.model = genai.GenerativeModel(model_name)
self.generation_config = {
"temperature": 0.7,
"top_p": 0.95,
"max_output_tokens": 4096, # Optimized for HF Spaces
}
self.request_timeout = 30 # 30s timeout
async def analyze_with_context(
self,
data: Dict,
analysis_type: str,
specific_question: Optional[str] = None
) -> str:
"""
Core analysis method used by all AI-powered tools
Args:
data: Data to analyze (dict or JSON)
analysis_type: "leaderboard", "trace", "cost_estimate", "comparison", "results"
specific_question: Optional specific question
Returns:
Markdown-formatted analysis
"""
# 1. Build system prompt based on analysis_type
system_prompt = self._get_system_prompt(analysis_type)
# 2. Format data for context
data_str = json.dumps(data, indent=2)
# 3. Build user prompt
user_prompt = f"{system_prompt}\n\nData:\n{data_str}"
if specific_question:
user_prompt += f"\n\nSpecific Question: {specific_question}"
# 4. Call Gemini API
response = await self.model.generate_content_async(
user_prompt,
generation_config=self.generation_config,
request_options={"timeout": self.request_timeout}
)
# 5. Extract and return text
return response.text
def _get_system_prompt(self, analysis_type: str) -> str:
"""Get specialized system prompt for each analysis type"""
prompts = {
"leaderboard": """You are an expert AI agent performance analyst.
Analyze evaluation leaderboard data and provide:
- Top performers by key metrics
- Trade-off analysis (cost vs accuracy)
- Trend identification
- Actionable recommendations
Format: Markdown with clear sections.""",
"trace": """You are an expert at debugging AI agent executions.
Analyze OpenTelemetry trace data and:
- Answer specific questions about execution
- Identify performance bottlenecks
- Explain reasoning chain
- Provide optimization suggestions
Format: Clear, concise explanation.""",
"cost_estimate": """You are a cost optimization expert.
Analyze cost estimation data and provide:
- Detailed cost breakdown
- Hardware recommendations
- Cost optimization opportunities
- ROI analysis
Format: Structured breakdown with recommendations.""",
# ... more prompts for other analysis types
}
return prompts.get(analysis_type, prompts["leaderboard"])
```
**Optimization Strategies**:
- **Token Reduction**: `max_output_tokens: 4096` (reduced from 8192) for faster responses
- **Request Timeout**: 30s timeout for HF Spaces compatibility
- **Temperature**: 0.7 for balanced creativity and consistency
- **Model Selection**: `gemini-2.5-flash-lite` for speed (can switch to `gemini-2.5-flash` for quality)
---
## MCP Protocol Implementation
### How Gradio's Native MCP Support Works
Gradio 6+ provides native MCP server capabilities through decorators and automatic schema generation.
**1. Tool Registration**:
```python
@gr.mcp.tool() # β This decorator tells Gradio to expose this as an MCP tool
async def my_tool(param1: str, param2: int = 10) -> str:
"""
Brief description (used in MCP tool schema).
Args:
param1 (str): Description of param1
param2 (int): Description of param2. Default: 10
Returns:
str: Description of return value
"""
return f"Result: {param1}, {param2}"
```
**What Gradio does automatically**:
- Parses function signature to extract parameter names and types
- Parses docstring to extract descriptions
- Generates MCP tool schema:
```json
{
"name": "my_tool",
"description": "Brief description (used in MCP tool schema).",
"inputSchema": {
"type": "object",
"properties": {
"param1": {
"type": "string",
"description": "Description of param1"
},
"param2": {
"type": "integer",
"default": 10,
"description": "Description of param2. Default: 10"
}
},
"required": ["param1"]
}
}
```
**2. Resource Registration**:
```python
@gr.mcp.resource()
def get_resource(uri: str) -> str:
"""
Resource description.
Args:
uri (str): Resource URI (e.g., "leaderboard://repo/name")
Returns:
str: JSON data
"""
# Parse URI
# Load data
# Return JSON string
pass
```
**3. Prompt Registration**:
```python
@gr.mcp.prompt()
def generate_prompt(prompt_type: str, context: str) -> str:
"""
Generate reusable prompt templates.
Args:
prompt_type (str): Type of prompt
context (str): Context for prompt generation
Returns:
str: Generated prompt text
"""
return f"Prompt template for {prompt_type} with {context}"
```
### MCP Endpoint URLs
When `demo.launch(mcp_server=True)` is called:
**SSE Endpoint** (Primary):
```
https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse
```
**Streamable HTTP Endpoint** (Alternative):
```
https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/
```
### Client Configuration
**Claude Desktop** (`claude_desktop_config.json`):
```json
{
"mcpServers": {
"tracemind": {
"url": "https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse",
"transport": "sse"
}
}
}
```
**Python MCP Client**:
```python
from mcp import ClientSession, ServerParameters
session = ClientSession(
ServerParameters(
url="https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse",
transport="sse"
)
)
await session.__aenter__()
# List tools
tools = await session.list_tools()
# Call tool
result = await session.call_tool("analyze_leaderboard", arguments={
"metric_focus": "cost",
"top_n": 5
})
```
---
## Gemini Integration
### API Configuration
**Environment Variable**:
```bash
GEMINI_API_KEY=your_api_key_here
```
**Initialization**:
```python
import google.generativeai as genai
genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
model = genai.GenerativeModel("gemini-2.5-flash-lite")
```
### Prompt Engineering Strategy
**1. System Prompts by Analysis Type**:
Each analysis type (leaderboard, trace, cost, comparison, results) has a specialized system prompt that:
- Defines the AI's role and expertise
- Specifies output format (markdown, structured sections)
- Lists key insights to include
- Sets tone (professional, concise, actionable)
**2. Context Injection**:
```python
user_prompt = f"""
{system_prompt}
Data to Analyze:
{json.dumps(data, indent=2)}
Specific Question: {question}
"""
```
**3. Output Formatting**:
- All responses in Markdown
- Clear sections: Top Performers, Key Insights, Trade-offs, Recommendations
- Bullet points for readability
- Code blocks for technical details
### Rate Limiting & Error Handling
**Rate Limits** (Gemini 2.5 Flash Lite free tier):
- 1,500 requests per day
- 1 request per second
**Error Handling Strategy**:
```python
try:
response = await model.generate_content_async(...)
return response.text
except google.api_core.exceptions.ResourceExhausted:
return "β **Rate limit exceeded**. Please try again in a few seconds."
except google.api_core.exceptions.DeadlineExceeded:
return "β **Request timeout**. The analysis is taking too long. Try with less data."
except Exception as e:
return f"β **Error**: {str(e)}"
```
---
## Data Flow
### Tool Execution Flow
```
1. MCP Client (e.g., Claude Desktop, TraceMind-AI)
βββ Calls: analyze_leaderboard(metric_focus="cost", top_n=5)
2. Gradio MCP Server (app.py)
βββ Routes to: analyze_leaderboard() in mcp_tools.py
3. MCP Tool Function (mcp_tools.py)
βββ Load data from HuggingFace Datasets
β βββ ds = load_dataset("kshitijthakkar/smoltrace-leaderboard")
β
βββ Process/filter data
β βββ Filter by time range, sort by metric
β
βββ Call Gemini Client
β βββ gemini_client.analyze_with_context(data, "leaderboard")
β
βββ Return formatted response
4. Gemini Client (gemini_client.py)
βββ Build system prompt
βββ Format data as JSON
βββ Call Gemini API
β βββ model.generate_content_async(prompt)
βββ Return AI-generated analysis
5. Response Path (back through stack)
βββ Gemini β gemini_client β mcp_tool β Gradio β MCP Client
6. MCP Client (displays result to user)
βββ Shows markdown-formatted analysis
```
### Resource Access Flow
```
1. MCP Client
βββ Accesses: leaderboard://kshitijthakkar/smoltrace-leaderboard
2. Gradio MCP Server
βββ Routes to: get_leaderboard_data(uri)
3. Resource Function
βββ Parse URI to extract repo name
βββ Load dataset from HuggingFace
βββ Convert to JSON
βββ Return raw JSON string
4. MCP Client
βββ Receives raw JSON data (no AI processing)
```
---
## Deployment Architecture
### HuggingFace Spaces Deployment
**Platform**: HuggingFace Spaces
**SDK**: Docker (for custom dependencies)
**Hardware**: CPU Basic (free tier) - sufficient for API calls and dataset loading
**URL**: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server
### Dockerfile
```dockerfile
# Base image
FROM python:3.10-slim
# Set working directory
WORKDIR /app
# Copy requirements
COPY requirements.txt .
# Install dependencies
RUN pip install --no-cache-dir -r requirements.txt
# Copy application files
COPY app.py .
COPY mcp_tools.py .
COPY gemini_client.py .
# Expose port
EXPOSE 7860
# Set environment variables
ENV GRADIO_SERVER_NAME="0.0.0.0"
ENV GRADIO_SERVER_PORT="7860"
# Run application
CMD ["python", "app.py"]
```
### Environment Variables (HF Spaces Secrets)
```bash
# Required
GEMINI_API_KEY=your_gemini_api_key_here
# Optional (for testing)
HF_TOKEN=your_huggingface_token_here
```
### Scaling Considerations
**Current Setup** (Free Tier):
- Hardware: CPU Basic
- Concurrent Users: ~10-20
- Request Latency: 2-5 seconds (AI analysis)
- Rate Limit: Gemini API (1,500 req/day)
**If Scaling Needed**:
1. **Upgrade Hardware**: CPU Basic β CPU Upgrade (2x performance)
2. **Caching**: Add Redis for caching frequent queries
3. **API Key Pool**: Rotate multiple Gemini API keys to bypass rate limits
4. **Load Balancing**: Deploy multiple Spaces instances with load balancer
---
## Development Workflow
### Local Development Setup
```bash
# 1. Clone repository
git clone https://github.com/Mandark-droid/TraceMind-mcp-server.git
cd TraceMind-mcp-server
# 2. Create virtual environment
python -m venv venv
source venv/bin/activate # Windows: venv\Scripts\activate
# 3. Install dependencies
pip install -r requirements.txt
# 4. Configure environment
cp .env.example .env
# Edit .env with your API keys
# 5. Run locally
python app.py
# 6. Access
# - Gradio UI: http://localhost:7860
# - MCP Endpoint: http://localhost:7860/gradio_api/mcp/sse
```
### Testing MCP Tools
**Option 1: Gradio UI** (Easiest):
```
1. Run app.py
2. Open http://localhost:7860
3. Navigate to tool tab (e.g., "π Analyze Leaderboard")
4. Fill in parameters
5. Click submit button
6. View results
```
**Option 2: Python MCP Client**:
```python
from mcp import ClientSession, ServerParameters
async def test_tool():
session = ClientSession(
ServerParameters(
url="http://localhost:7860/gradio_api/mcp/sse",
transport="sse"
)
)
await session.__aenter__()
result = await session.call_tool("analyze_leaderboard", {
"metric_focus": "cost",
"top_n": 3
})
print(result.content[0].text)
import asyncio
asyncio.run(test_tool())
```
### Adding New MCP Tools
**Step 1: Add function to mcp_tools.py**:
```python
@gr.mcp.tool()
async def new_tool_name(
param1: str,
param2: int = 10
) -> str:
"""
Brief description of what this tool does.
Detailed explanation of the tool's purpose and behavior.
Args:
param1 (str): Description of param1 with examples
param2 (int): Description of param2. Default: 10
Returns:
str: Description of what the function returns
"""
try:
# Implementation
result = f"Processed: {param1} with {param2}"
return result
except Exception as e:
return f"β **Error**: {str(e)}"
```
**Step 2: Add testing UI to app.py** (optional):
```python
with gr.Tab("π New Tool"):
gr.Markdown("## New Tool Name")
param1_input = gr.Textbox(label="Param 1")
param2_input = gr.Number(label="Param 2", value=10)
submit_btn = gr.Button("Execute")
output = gr.Markdown()
submit_btn.click(
fn=new_tool_name,
inputs=[param1_input, param2_input],
outputs=output
)
```
**Step 3: Test**:
```bash
python app.py
# Visit http://localhost:7860
# Test in new tab
```
**Step 4: Deploy**:
```bash
git add mcp_tools.py app.py
git commit -m "feat: Add new_tool_name MCP tool"
git push origin main
# HF Spaces auto-deploys
```
---
## Performance Considerations
### 1. Token Optimization
**Problem**: Loading full datasets consumes excessive tokens in AI analysis.
**Solutions**:
- **get_top_performers**: Returns only top N models (90% token reduction)
- **get_leaderboard_summary**: Returns aggregated stats (99% token reduction)
- **Data sampling**: Limit rows when loading datasets (max_rows parameter)
**Example**:
```python
# β BAD: Loads 51 rows, ~50K tokens
full_data = load_dataset("kshitijthakkar/smoltrace-leaderboard")
# β
GOOD: Returns top 5, ~5K tokens (90% reduction)
top_5 = await get_top_performers(top_n=5)
# β
BETTER: Returns summary, ~500 tokens (99% reduction)
summary = await get_leaderboard_summary()
```
### 2. Async Operations
All tools are `async` for efficient I/O:
```python
@gr.mcp.tool()
async def tool_name(...): # β async
ds = load_dataset(...) # β Blocks on I/O
result = await gemini_client.analyze(...) # β async API call
return result
```
Benefits:
- Non-blocking API calls
- Multiple concurrent requests
- Better resource utilization
### 3. Caching (Future Enhancement)
**Current**: No caching (stateless)
**Future**: Add Redis for caching frequent queries
```python
import redis
from functools import wraps
redis_client = redis.Redis(...)
def cache_result(ttl=300):
def decorator(func):
@wraps(func)
async def wrapper(*args, **kwargs):
# Generate cache key
cache_key = f"{func.__name__}:{hash((args, tuple(kwargs.items())))}"
# Check cache
cached = redis_client.get(cache_key)
if cached:
return cached.decode()
# Execute function
result = await func(*args, **kwargs)
# Store in cache
redis_client.setex(cache_key, ttl, result)
return result
return wrapper
return decorator
@gr.mcp.tool()
@cache_result(ttl=300) # 5-minute cache
async def analyze_leaderboard(...):
pass
```
---
## Security
### API Key Management
**Storage**:
- Development: `.env` file (gitignored)
- Production: HuggingFace Spaces Secrets (encrypted)
**Access**:
```python
# gemini_client.py
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
raise ValueError("GEMINI_API_KEY not set")
```
**Never**:
- β Hardcode API keys in source code
- β Commit `.env` to git
- β Expose keys in client-side JavaScript
- β Log API keys in console/files
### Input Validation
**Dataset Repository Validation**:
```python
# Only allow "smoltrace-" prefix datasets
if "smoltrace-" not in dataset_repo:
return "β Error: Dataset must contain 'smoltrace-' prefix for security"
```
**Parameter Validation**:
```python
# Constrain ranges
top_n = max(1, min(20, top_n)) # Clamp between 1-20
max_rows = max(10, min(500, max_rows)) # Clamp between 10-500
```
### Rate Limiting
**Gemini API**:
- Free tier: 1,500 requests/day
- Handled by Google (automatic)
- Errors returned as user-friendly messages
**HuggingFace Datasets**:
- No rate limits for public datasets
- Private datasets require HF token
---
## Related Documentation
- [README.md](PROPOSED_README_MCP_SERVER.md) - Overview and quick start
- [DOCUMENTATION.md](DOCUMENTATION_MCP_SERVER.md) - Complete API reference
- [TraceMind-AI Architecture](ARCHITECTURE_TRACEMIND_AI.md) - Client-side architecture
---
**Last Updated**: November 21, 2025
**Version**: 1.0.0
**Track**: Building MCP (Enterprise)
|