File size: 26,474 Bytes
6982f0b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 |
# TraceMind MCP Server - Complete API Documentation
This document provides comprehensive API reference for all MCP components provided by TraceMind MCP Server.
## Table of Contents
- [MCP Tools (11)](#mcp-tools)
- [AI-Powered Analysis Tools](#ai-powered-analysis-tools)
- [Token-Optimized Tools](#token-optimized-tools)
- [Data Management Tools](#data-management-tools)
- [MCP Resources (3)](#mcp-resources)
- [MCP Prompts (3)](#mcp-prompts)
- [Error Handling](#error-handling)
- [Best Practices](#best-practices)
---
## MCP Tools
### AI-Powered Analysis Tools
These tools use Google Gemini 2.5 Flash to provide intelligent, context-aware analysis of agent evaluation data.
#### 1. analyze_leaderboard
Analyzes evaluation leaderboard data from HuggingFace datasets and generates AI-powered insights.
**Parameters:**
- `leaderboard_repo` (str): HuggingFace dataset repository
- Default: `"kshitijthakkar/smoltrace-leaderboard"`
- Format: `"username/dataset-name"`
- `metric_focus` (str): Primary metric to analyze
- Options: `"overall"`, `"accuracy"`, `"cost"`, `"latency"`, `"co2"`
- Default: `"overall"`
- `time_range` (str): Time period to analyze
- Options: `"last_week"`, `"last_month"`, `"all_time"`
- Default: `"last_week"`
- `top_n` (int): Number of top models to highlight
- Range: 1-20
- Default: 5
**Returns:** String containing AI-generated analysis with:
- Top performers by selected metric
- Trade-off analysis (e.g., accuracy vs cost)
- Trend identification
- Actionable recommendations
**Example Use Case:**
Before choosing a model for production, get AI-powered insights on which configuration offers the best cost/performance for your requirements.
**Example Call:**
```python
result = await analyze_leaderboard(
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
metric_focus="cost",
time_range="last_week",
top_n=5
)
```
**Example Response:**
```
Based on 247 evaluations in the past week:
Top Performers (Cost Focus):
1. meta-llama/Llama-3.1-8B: $0.002 per run, 93.4% accuracy
2. mistralai/Mistral-7B: $0.003 per run, 91.2% accuracy
3. openai/gpt-3.5-turbo: $0.008 per run, 94.1% accuracy
Trade-off Analysis:
- Llama-3.1 offers best cost/performance ratio at 25x cheaper than GPT-4
- GPT-4 leads in accuracy (95.8%) but costs $0.05 per run
- For production with 1M runs/month: Llama-3.1 saves $48,000 vs GPT-4
Recommendations:
- Cost-sensitive: Use Llama-3.1-8B (93% accuracy, minimal cost)
- Accuracy-critical: Use GPT-4 (96% accuracy, premium cost)
- Balanced: Use GPT-3.5-Turbo (94% accuracy, moderate cost)
```
---
#### 2. debug_trace
Analyzes OpenTelemetry trace data and answers specific questions about agent execution.
**Parameters:**
- `trace_dataset` (str): HuggingFace dataset containing traces
- Format: `"username/smoltrace-traces-model"`
- Must contain "smoltrace-" prefix
- `trace_id` (str): Specific trace ID to analyze
- Format: `"trace_abc123"`
- `question` (str): Question about the trace
- Examples: "Why was tool X called twice?", "Which step took the most time?"
- `include_metrics` (bool): Include GPU metrics in analysis
- Default: `true`
**Returns:** String containing AI analysis of the trace with:
- Answer to the specific question
- Relevant span details
- Performance insights
- GPU metrics (if available and requested)
**Example Use Case:**
When an agent test fails, understand exactly what happened without manually parsing trace spans.
**Example Call:**
```python
result = await debug_trace(
trace_dataset="kshitij/smoltrace-traces-gpt4",
trace_id="trace_abc123",
question="Why was the search tool called twice?",
include_metrics=True
)
```
**Example Response:**
```
Based on trace analysis:
Answer:
The agent called the search_web tool twice due to an iterative reasoning pattern:
1. First call (span_003 at 14:23:19.000):
- Query: "weather in Tokyo"
- Duration: 890ms
- Result: 5 results, oldest was 2 days old
2. Second call (span_005 at 14:23:21.200):
- Query: "latest weather in Tokyo"
- Duration: 1200ms
- Modified reasoning: LLM determined first results were stale
Performance Impact:
- Added 2.09s to total execution time
- Cost increase: +$0.0003 (tokens for second reasoning step)
- This is normal behavior for tool-calling agents with iterative reasoning
GPU Metrics:
- N/A (API model, no GPU used)
```
---
#### 3. estimate_cost
Predicts costs, duration, and environmental impact before running evaluations.
**Parameters:**
- `model` (str, required): Model name to evaluate
- Format: `"provider/model-name"` (e.g., `"openai/gpt-4"`, `"meta-llama/Llama-3.1-8B"`)
- `agent_type` (str): Type of agent evaluation
- Options: `"tool"`, `"code"`, `"both"`
- Default: `"both"`
- `num_tests` (int): Number of test cases
- Range: 1-10000
- Default: 100
- `hardware` (str): Hardware type
- Options: `"auto"`, `"cpu"`, `"gpu_a10"`, `"gpu_h200"`
- Default: `"auto"` (auto-selects based on model)
**Returns:** String containing cost estimate with:
- LLM API costs (for API models)
- HuggingFace Jobs compute costs (for local models)
- Estimated duration
- CO2 emissions estimate
- Hardware recommendations
**Example Use Case:**
Compare the cost of evaluating GPT-4 vs Llama-3.1 across 1000 tests before committing resources.
**Example Call:**
```python
result = await estimate_cost(
model="openai/gpt-4",
agent_type="both",
num_tests=1000,
hardware="auto"
)
```
**Example Response:**
```
Cost Estimate for openai/gpt-4:
LLM API Costs:
- Estimated tokens per test: 1,500
- Token cost: $0.03/1K input, $0.06/1K output
- Total LLM cost: $50.00 (1000 tests)
Compute Costs:
- Recommended hardware: cpu-basic (API model)
- HF Jobs cost: ~$0.05/hr
- Estimated duration: 45 minutes
- Total compute cost: $0.04
Total Cost: $50.04
Cost per test: $0.05
CO2 emissions: ~0.5g (API calls, minimal compute)
Recommendations:
- This is an API model, CPU hardware is sufficient
- For cost optimization, consider Llama-3.1-8B (25x cheaper)
- Estimated runtime: 45 minutes for 1000 tests
```
---
#### 4. compare_runs
Compares two evaluation runs with AI-powered analysis across multiple dimensions.
**Parameters:**
- `run_id_1` (str, required): First run ID from leaderboard
- `run_id_2` (str, required): Second run ID from leaderboard
- `leaderboard_repo` (str): Leaderboard dataset repository
- Default: `"kshitijthakkar/smoltrace-leaderboard"`
- `focus` (str): Comparison focus area
- Options:
- `"comprehensive"`: All dimensions
- `"cost"`: Cost efficiency and ROI
- `"performance"`: Speed and accuracy trade-offs
- `"eco_friendly"`: Environmental impact
- Default: `"comprehensive"`
**Returns:** String containing AI comparison with:
- Success rate comparison with statistical significance
- Cost efficiency analysis
- Speed comparison
- Environmental impact (CO2 emissions)
- GPU efficiency (for GPU jobs)
**Example Use Case:**
After running evaluations with two different models, compare them head-to-head to determine which is better for production deployment.
**Example Call:**
```python
result = await compare_runs(
run_id_1="run_abc123",
run_id_2="run_def456",
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
focus="cost"
)
```
**Example Response:**
```
Comparison: GPT-4 vs Llama-3.1-8B (Cost Focus)
Success Rates:
- GPT-4: 95.8% (96/100 tests)
- Llama-3.1: 93.4% (93/100 tests)
- Difference: +2.4% for GPT-4 (statistically significant, p<0.05)
Cost Efficiency:
- GPT-4: $0.05 per test, $0.052 per successful test
- Llama-3.1: $0.002 per test, $0.0021 per successful test
- Cost ratio: GPT-4 is 25x more expensive
ROI Analysis:
- For 1M evaluations/month:
- GPT-4: $50,000/month, 958K successes
- Llama-3.1: $2,000/month, 934K successes
- GPT-4 provides 24K more successes for $48K more cost
- Cost per additional success: $2.00
Recommendation (Cost Focus):
Use Llama-3.1-8B for cost-sensitive workloads where 93% accuracy is acceptable.
Switch to GPT-4 only for accuracy-critical tasks where the 2.4% improvement justifies 25x cost.
```
---
#### 5. analyze_results
Analyzes detailed test results and provides optimization recommendations.
**Parameters:**
- `results_repo` (str, required): HuggingFace dataset containing results
- Format: `"username/smoltrace-results-model-timestamp"`
- Must contain "smoltrace-results-" prefix
- `analysis_focus` (str): Focus area for analysis
- Options: `"failures"`, `"performance"`, `"cost"`, `"comprehensive"`
- Default: `"comprehensive"`
- `max_rows` (int): Maximum test cases to analyze
- Range: 10-500
- Default: 100
**Returns:** String containing AI analysis with:
- Failure patterns and root causes
- Performance bottlenecks in specific test cases
- Cost optimization opportunities
- Tool usage patterns
- Task-specific insights (which types work well vs poorly)
- Actionable optimization recommendations
**Example Use Case:**
After running an evaluation, analyze the detailed test results to understand why certain tests are failing and get specific recommendations for improving success rate.
**Example Call:**
```python
result = await analyze_results(
results_repo="kshitij/smoltrace-results-gpt4-20251120",
analysis_focus="failures",
max_rows=100
)
```
**Example Response:**
```
Analysis of Test Results (100 tests analyzed)
Overall Statistics:
- Success Rate: 89% (89/100 tests passed)
- Average Duration: 3.2s per test
- Total Cost: $4.50 ($0.045 per test)
Failure Analysis (11 failures):
1. Tool Not Found (6 failures):
- Test IDs: task_012, task_045, task_067, task_089, task_091, task_093
- Pattern: All failed tests required the 'get_weather' tool
- Root Cause: Tool definition missing or incorrect name
- Fix: Ensure 'get_weather' tool is available in agent's tool list
2. Timeout (3 failures):
- Test IDs: task_034, task_071, task_088
- Pattern: Complex multi-step tasks with >5 tool calls
- Root Cause: Exceeding 30s timeout limit
- Fix: Increase timeout to 60s or simplify complex tasks
3. Incorrect Response (2 failures):
- Test IDs: task_056, task_072
- Pattern: Math calculation tasks
- Root Cause: Model hallucinating numbers instead of using calculator tool
- Fix: Update prompt to emphasize tool usage for calculations
Performance Insights:
- Fast tasks (<2s): 45 tests - Simple single-tool calls
- Slow tasks (>5s): 12 tests - Multi-step reasoning with 3+ tools
- Optimal duration: 2-3s for most tasks
Cost Optimization:
- High-cost tests: task_023 ($0.12) - Used 4K tokens
- Low-cost tests: task_087 ($0.008) - Used 180 tokens
- Recommendation: Optimize prompt to reduce token usage by 20%
Recommendations:
1. Add missing 'get_weather' tool β Fixes 6 failures
2. Increase timeout from 30s to 60s β Fixes 3 failures
3. Strengthen calculator tool instruction β Fixes 2 failures
4. Expected improvement: 89% β 100% success rate
```
---
### Token-Optimized Tools
These tools are specifically designed to minimize token usage when querying leaderboard data.
#### 6. get_top_performers
Get top N performing models from leaderboard with 90% token reduction.
**Performance Optimization:** Returns only top N models instead of loading the full leaderboard dataset (51 runs), resulting in **90% token reduction**.
**When to Use:** Perfect for queries like "Which model is leading?", "Show me the top 5 models".
**Parameters:**
- `leaderboard_repo` (str): HuggingFace dataset repository
- Default: `"kshitijthakkar/smoltrace-leaderboard"`
- `metric` (str): Metric to rank by
- Options: `"success_rate"`, `"total_cost_usd"`, `"avg_duration_ms"`, `"co2_emissions_g"`
- Default: `"success_rate"`
- `top_n` (int): Number of top models to return
- Range: 1-20
- Default: 5
**Returns:** JSON string with:
- Metric used for ranking
- Ranking order (ascending/descending)
- Total runs in leaderboard
- Array of top performers with 10 essential fields
**Benefits:**
- β
Token Reduction: 90% fewer tokens vs full dataset
- β
Ready to Use: Properly formatted JSON
- β
Pre-Sorted: Already ranked by chosen metric
- β
Essential Data Only: 10 fields vs 20+ in full dataset
**Example Call:**
```python
result = await get_top_performers(
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard",
metric="total_cost_usd",
top_n=3
)
```
**Example Response:**
```json
{
"metric": "total_cost_usd",
"order": "ascending",
"total_runs": 51,
"top_performers": [
{
"run_id": "run_001",
"model": "meta-llama/Llama-3.1-8B",
"success_rate": 93.4,
"total_cost_usd": 0.002,
"avg_duration_ms": 2100,
"agent_type": "both",
"provider": "transformers",
"submitted_by": "kshitij",
"timestamp": "2025-11-20T10:30:00Z",
"total_tests": 100
},
...
]
}
```
---
#### 7. get_leaderboard_summary
Get high-level leaderboard statistics with 99% token reduction.
**Performance Optimization:** Returns only aggregated statistics instead of raw data, resulting in **99% token reduction**.
**When to Use:** Perfect for overview queries like "How many runs are in the leaderboard?", "What's the average success rate?".
**Parameters:**
- `leaderboard_repo` (str): HuggingFace dataset repository
- Default: `"kshitijthakkar/smoltrace-leaderboard"`
**Returns:** JSON string with:
- Total runs count
- Unique models and submitters
- Overall statistics (avg/best/worst success rates, avg cost, avg duration, total CO2)
- Breakdown by agent type
- Breakdown by provider
- Top 3 models by success rate
**Benefits:**
- β
Extreme Token Reduction: 99% fewer tokens
- β
Ready to Use: Properly formatted JSON
- β
Comprehensive Stats: Averages, distributions, breakdowns
- β
Quick Insights: Perfect for overview questions
**Example Call:**
```python
result = await get_leaderboard_summary(
leaderboard_repo="kshitijthakkar/smoltrace-leaderboard"
)
```
**Example Response:**
```json
{
"total_runs": 51,
"unique_models": 12,
"unique_submitters": 3,
"overall_stats": {
"avg_success_rate": 89.2,
"best_success_rate": 95.8,
"worst_success_rate": 78.3,
"avg_cost_usd": 0.012,
"avg_duration_ms": 3200,
"total_co2_g": 45.6
},
"by_agent_type": {
"tool": {"count": 20, "avg_success_rate": 88.5},
"code": {"count": 18, "avg_success_rate": 87.2},
"both": {"count": 13, "avg_success_rate": 92.1}
},
"by_provider": {
"litellm": {"count": 30, "avg_success_rate": 91.3},
"transformers": {"count": 21, "avg_success_rate": 86.4}
},
"top_3_models": [
{"model": "openai/gpt-4", "success_rate": 95.8},
{"model": "anthropic/claude-3", "success_rate": 94.1},
{"model": "meta-llama/Llama-3.1-8B", "success_rate": 93.4}
]
}
```
---
### Data Management Tools
#### 8. get_dataset
Loads SMOLTRACE datasets from HuggingFace and returns raw data as JSON.
**β οΈ Important:** For leaderboard queries, prefer using `get_top_performers()` or `get_leaderboard_summary()` to avoid token bloat!
**Security Restriction:** Only datasets with "smoltrace-" in the repository name are allowed.
**Parameters:**
- `dataset_repo` (str, required): HuggingFace dataset repository
- Must contain "smoltrace-" prefix
- Format: `"username/smoltrace-type-model"`
- `split` (str): Dataset split to load
- Default: `"train"`
- `limit` (int): Maximum rows to return
- Range: 1-200
- Default: 100
**Returns:** JSON string with:
- Total rows in dataset
- List of column names
- Array of data rows (up to `limit`)
**Primary Use Cases:**
- Load `smoltrace-results-*` datasets for test case details
- Load `smoltrace-traces-*` datasets for OpenTelemetry data
- Load `smoltrace-metrics-*` datasets for GPU metrics
- **NOT recommended** for leaderboard queries (use optimized tools)
**Example Call:**
```python
result = await get_dataset(
dataset_repo="kshitij/smoltrace-results-gpt4",
split="train",
limit=50
)
```
---
#### 9. generate_synthetic_dataset
Creates domain-specific test datasets for SMOLTRACE evaluations using AI.
**Parameters:**
- `domain` (str, required): Domain for tasks
- Examples: "e-commerce", "customer service", "finance", "healthcare"
- `tools` (list[str], required): Available tools
- Example: `["search_web", "get_weather", "calculator"]`
- `num_tasks` (int): Number of tasks to generate
- Range: 1-100
- Default: 20
- `difficulty_distribution` (str): Task difficulty mix
- Options: `"balanced"`, `"easy_only"`, `"medium_only"`, `"hard_only"`, `"progressive"`
- Default: `"balanced"`
- `agent_type` (str): Target agent type
- Options: `"tool"`, `"code"`, `"both"`
- Default: `"both"`
**Returns:** JSON string with:
- `dataset_info`: Metadata (domain, tools, counts, timestamp)
- `tasks`: Array of SMOLTRACE-formatted tasks
- `usage_instructions`: Guide for HuggingFace upload and SMOLTRACE usage
**SMOLTRACE Task Format:**
```json
{
"id": "unique_identifier",
"prompt": "Clear, specific task for the agent",
"expected_tool": "tool_name",
"expected_tool_calls": 1,
"difficulty": "easy|medium|hard",
"agent_type": "tool|code",
"expected_keywords": ["keyword1", "keyword2"]
}
```
**Difficulty Calibration:**
- **Easy** (40%): Single tool call, straightforward input
- **Medium** (40%): Multiple tool calls OR complex input parsing
- **Hard** (20%): Multiple tools, complex reasoning, edge cases
**Enterprise Use Cases:**
- Custom Tools: Benchmark proprietary APIs
- Industry-Specific: Generate tasks for finance, healthcare, legal
- Internal Workflows: Test company-specific processes
**Example Call:**
```python
result = await generate_synthetic_dataset(
domain="customer service",
tools=["search_knowledge_base", "create_ticket", "send_email"],
num_tasks=50,
difficulty_distribution="balanced",
agent_type="tool"
)
```
---
#### 10. push_dataset_to_hub
Upload generated datasets to HuggingFace Hub with proper formatting.
**Parameters:**
- `dataset_name` (str, required): Repository name on HuggingFace
- Format: `"username/my-dataset"`
- `data` (str or list, required): Dataset content
- Can be JSON string or list of dictionaries
- `description` (str): Dataset description for card
- Default: Auto-generated
- `private` (bool): Make dataset private
- Default: `False`
**Returns:** Success message with dataset URL
**Example Workflow:**
1. Generate synthetic dataset with `generate_synthetic_dataset`
2. Review and modify tasks if needed
3. Upload to HuggingFace with `push_dataset_to_hub`
4. Use in SMOLTRACE evaluations or share with team
**Example Call:**
```python
result = await push_dataset_to_hub(
dataset_name="kshitij/my-custom-evaluation",
data=generated_tasks,
description="Custom evaluation dataset for e-commerce agents",
private=False
)
```
---
#### 11. generate_prompt_template
Generate customized smolagents prompt template for a specific domain and tool set.
**Parameters:**
- `domain` (str, required): Domain for the prompt template
- Examples: `"finance"`, `"healthcare"`, `"customer_support"`, `"e-commerce"`
- `tool_names` (str, required): Comma-separated list of tool names
- Format: `"tool1,tool2,tool3"`
- Example: `"get_stock_price,calculate_roi,fetch_company_info"`
- `agent_type` (str): Agent type
- Options: `"tool"` (ToolCallingAgent), `"code"` (CodeAgent)
- Default: `"tool"`
**Returns:** JSON response containing:
- Customized YAML prompt template
- Metadata (domain, tools, agent_type, timestamp)
- Usage instructions
**Use Case:**
When you generate synthetic datasets with `generate_synthetic_dataset`, use this tool to create a matching prompt template that agents can use during evaluation. This ensures your evaluation setup is complete and ready to run.
**Integration:**
The generated prompt template can be included in your HuggingFace dataset card, making it easy for anyone to run evaluations with your dataset.
**Example Call:**
```python
result = await generate_prompt_template(
domain="customer_support",
tool_names="search_knowledge_base,create_ticket,send_email,escalate_to_human",
agent_type="tool"
)
```
**Example Response:**
```json
{
"prompt_template": "---\nname: customer_support_agent\ndescription: An AI agent for customer support tasks...\n\ninstructions: |-\n You are a helpful customer support agent...\n \n Available tools:\n - search_knowledge_base: Search the knowledge base...\n - create_ticket: Create a support ticket...\n ...",
"metadata": {
"domain": "customer_support",
"tools": ["search_knowledge_base", "create_ticket", "send_email", "escalate_to_human"],
"agent_type": "tool",
"base_template": "ToolCallingAgent",
"timestamp": "2025-11-21T10:30:00Z"
},
"usage_instructions": "1. Save the prompt_template to a file (e.g., customer_support_prompt.yaml)\n2. Use with SMOLTRACE: smoltrace-eval --model your-model --prompt-file customer_support_prompt.yaml\n3. Or include in your dataset card for easy evaluation"
}
```
---
## MCP Resources
Resources provide direct data access without AI analysis. Access via URI scheme.
### 1. leaderboard://{repo}
Direct access to raw leaderboard data in JSON format.
**URI Format:**
```
leaderboard://username/dataset-name
```
**Example:**
```
GET leaderboard://kshitijthakkar/smoltrace-leaderboard
```
**Returns:** JSON array with all evaluation runs, including:
- run_id, model, agent_type, provider
- success_rate, total_tests, successful_tests, failed_tests
- avg_duration_ms, total_tokens, total_cost_usd, co2_emissions_g
- results_dataset, traces_dataset, metrics_dataset (references)
- timestamp, submitted_by, hf_job_id
---
### 2. trace://{trace_id}/{repo}
Direct access to trace data with OpenTelemetry spans.
**URI Format:**
```
trace://trace_id/username/dataset-name
```
**Example:**
```
GET trace://trace_abc123/kshitij/agent-traces-gpt4
```
**Returns:** JSON with:
- traceId
- spans array (spanId, parentSpanId, name, kind, startTime, endTime, attributes, status)
---
### 3. cost://model/{model_name}
Model pricing and hardware cost information.
**URI Format:**
```
cost://model/provider/model-name
```
**Example:**
```
GET cost://model/openai/gpt-4
```
**Returns:** JSON with:
- Model pricing (input/output token costs)
- Recommended hardware tier
- Estimated compute costs
- CO2 emissions per 1K tokens
---
## MCP Prompts
Prompts provide reusable templates for standardized interactions.
### 1. analysis_prompt
Templates for different analysis types.
**Parameters:**
- `analysis_type` (str): Type of analysis
- Options: `"leaderboard"`, `"cost"`, `"performance"`, `"trace"`
- `focus_area` (str): Specific focus
- Options: `"overall"`, `"cost"`, `"accuracy"`, `"speed"`, `"eco"`
- `detail_level` (str): Level of detail
- Options: `"summary"`, `"detailed"`, `"comprehensive"`
**Returns:** Formatted prompt string for use with AI tools
**Example:**
```python
prompt = analysis_prompt(
analysis_type="leaderboard",
focus_area="cost",
detail_level="detailed"
)
# Returns: "Provide a detailed analysis of cost efficiency in the leaderboard..."
```
---
### 2. debug_prompt
Templates for debugging scenarios.
**Parameters:**
- `debug_type` (str): Type of debugging
- Options: `"failure"`, `"performance"`, `"tool_calling"`, `"reasoning"`
- `context` (str): Additional context
- Options: `"test_failure"`, `"timeout"`, `"unexpected_tool"`, `"reasoning_loop"`
**Returns:** Formatted prompt string
**Example:**
```python
prompt = debug_prompt(
debug_type="performance",
context="tool_calling"
)
# Returns: "Analyze tool calling performance. Identify which tools are slow..."
```
---
### 3. optimization_prompt
Templates for optimization goals.
**Parameters:**
- `optimization_goal` (str): Optimization target
- Options: `"cost"`, `"speed"`, `"accuracy"`, `"co2"`
- `constraints` (str): Constraints to respect
- Options: `"maintain_quality"`, `"no_accuracy_loss"`, `"budget_limit"`, `"time_limit"`
**Returns:** Formatted prompt string
**Example:**
```python
prompt = optimization_prompt(
optimization_goal="cost",
constraints="maintain_quality"
)
# Returns: "Analyze this evaluation setup and recommend cost optimizations..."
```
---
## Error Handling
### Common Error Responses
**Invalid Dataset Repository:**
```json
{
"error": "Dataset must contain 'smoltrace-' prefix for security",
"provided": "username/invalid-dataset"
}
```
**Dataset Not Found:**
```json
{
"error": "Dataset not found on HuggingFace",
"repository": "username/smoltrace-nonexistent"
}
```
**API Rate Limit:**
```json
{
"error": "Gemini API rate limit exceeded",
"retry_after": 60
}
```
**Invalid Parameters:**
```json
{
"error": "Invalid parameter value",
"parameter": "top_n",
"value": 50,
"allowed_range": "1-20"
}
```
---
## Best Practices
### 1. Token Optimization
**DO:**
- Use `get_top_performers()` for "top N" queries (90% token reduction)
- Use `get_leaderboard_summary()` for overview queries (99% token reduction)
- Set appropriate `limit` when using `get_dataset()`
**DON'T:**
- Use `get_dataset()` for leaderboard queries (loads all 51 runs)
- Request more data than needed
- Ignore token optimization tools
### 2. AI Tool Usage
**DO:**
- Use AI tools (`analyze_leaderboard`, `debug_trace`) for complex analysis
- Provide specific questions to `debug_trace` for focused answers
- Use `focus` parameter in `compare_runs` for targeted comparisons
**DON'T:**
- Use AI tools for simple data retrieval (use resources instead)
- Make vague requests (be specific for better results)
### 3. Dataset Security
**DO:**
- Only use datasets with "smoltrace-" prefix
- Verify dataset exists before requesting
- Use public datasets or authenticate for private ones
**DON'T:**
- Try to access arbitrary HuggingFace datasets
- Share private dataset URLs without authentication
### 4. Cost Management
**DO:**
- Use `estimate_cost` before running large evaluations
- Compare cost estimates across different models
- Consider token-optimized tools to reduce API costs
**DON'T:**
- Skip cost estimation for expensive operations
- Ignore hardware recommendations
- Overlook CO2 emissions in decision-making
---
## Support
For issues or questions:
- π§ GitHub Issues: [TraceMind-mcp-server/issues](https://github.com/Mandark-droid/TraceMind-mcp-server/issues)
- π¬ HF Discord: `#agents-mcp-hackathon-winter25`
- π·οΈ Tag: `building-mcp-track-enterprise`
|