File size: 50,955 Bytes
a3116de 266ceb7 a3116de 84a5f9c a3116de 82a3de0 a3116de 82a3de0 a3116de 84a5f9c a3116de 84a5f9c a3116de 266ceb7 a3116de 84a5f9c a3116de 82a3de0 a3116de 82a3de0 a3116de 84a5f9c a3116de 84a5f9c a3116de 266ceb7 a3116de 84a5f9c a3116de 82a3de0 a3116de 82a3de0 a3116de 84a5f9c a3116de 84a5f9c a3116de 266ceb7 a3116de 84a5f9c a3116de 84a5f9c a3116de 84a5f9c a3116de eb3c2b5 266ceb7 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de 82a3de0 a3116de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 |
"""
MCP Tool Implementations for TraceMind
Implements:
- 5 MCP Tools: analyze_leaderboard, debug_trace, estimate_cost, compare_runs, get_dataset
- 3 MCP Resources: leaderboard data, trace data, cost data
- 3 MCP Prompts: analysis prompts, debug prompts, optimization prompts
With Gradio's native MCP support (mcp_server=True), these are automatically
exposed based on decorators (@gr.mcp.tool, @gr.mcp.resource, @gr.mcp.prompt),
docstrings, and type hints.
"""
import os
import json
from typing import Optional
from datasets import load_dataset
import pandas as pd
from datetime import datetime, timedelta
import gradio as gr
from gemini_client import GeminiClient
@gr.mcp.tool()
async def analyze_leaderboard(
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
metric_focus: str = "overall",
time_range: str = "last_week",
top_n: int = 5,
hf_token: Optional[str] = None,
gemini_api_key: Optional[str] = None
) -> str:
"""
Answer questions about the leaderboard with AI-powered analysis and insights.
USE THIS TOOL when you need to:
- Answer questions like "Which model is leading?", "What's the best model for cost?"
- Get intelligent insights about top performers and trends
- Compare models and understand trade-offs
- Get recommendations based on leaderboard data
DO NOT use the leaderboard:// resource for questions - use this tool instead!
The resource only returns raw JSON data without any analysis.
This tool uses Google Gemini 2.5 Pro to provide intelligent analysis of
agent evaluation results, including top performers, trends, cost/performance
trade-offs, and actionable recommendations.
Args:
leaderboard_repo (str): HuggingFace dataset repository containing leaderboard data. Default: "kshitijthakkar/smoltrace-leaderboard"
metric_focus (str): Primary metric to focus analysis on. Options: "overall", "accuracy", "cost", "latency", "co2". Default: "overall"
time_range (str): Time range for analysis. Options: "last_week", "last_month", "all_time". Default: "last_week"
top_n (int): Number of top models to highlight in analysis. Must be between 3 and 10. Default: 5
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
gemini_api_key (Optional[str]): Google Gemini API key. If None, uses GEMINI_API_KEY environment variable.
Returns:
str: Markdown-formatted analysis with top performers, insights, trade-offs, and recommendations
"""
try:
# Initialize Gemini client with provided key or from environment
gemini_client = GeminiClient(api_key=gemini_api_key) if gemini_api_key else GeminiClient()
# Load leaderboard data from HuggingFace
print(f"Loading leaderboard from {leaderboard_repo}...")
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(leaderboard_repo, split="train", token=token)
df = pd.DataFrame(ds)
# Filter by time range
if time_range != "all_time":
df['timestamp'] = pd.to_datetime(df['timestamp'])
now = datetime.now()
if time_range == "last_week":
cutoff = now - timedelta(days=7)
elif time_range == "last_month":
cutoff = now - timedelta(days=30)
df = df[df['timestamp'] >= cutoff]
# Sort by metric
metric_column_map = {
"overall": "success_rate",
"accuracy": "success_rate",
"cost": "total_cost_usd",
"latency": "avg_duration_ms",
"co2": "co2_emissions_g"
}
sort_column = metric_column_map.get(metric_focus, "success_rate")
ascending = metric_focus in ["cost", "latency", "co2"] # Lower is better for these
df_sorted = df.sort_values(sort_column, ascending=ascending)
# Get top N
top_models = df_sorted.head(top_n)
# Prepare data summary for Gemini
analysis_data = {
"total_evaluations": len(df),
"time_range": time_range,
"metric_focus": metric_focus,
"top_models": top_models[[
"model", "agent_type", "provider",
"success_rate", "total_cost_usd", "avg_duration_ms",
"co2_emissions_g", "submitted_by"
]].to_dict('records'),
"summary_stats": {
"avg_success_rate": float(df['success_rate'].mean()),
"avg_cost": float(df['total_cost_usd'].mean()),
"avg_duration_ms": float(df['avg_duration_ms'].mean()),
"total_co2_g": float(df['co2_emissions_g'].sum()),
"models_tested": df['model'].nunique(),
"unique_submitters": df['submitted_by'].nunique()
}
}
# Get AI analysis from Gemini
result = await gemini_client.analyze_with_context(
data=analysis_data,
analysis_type="leaderboard",
specific_question=f"Focus on {metric_focus} performance. What are the key insights?"
)
return result
except Exception as e:
return f"❌ **Error analyzing leaderboard**: {str(e)}\n\nPlease check:\n- Repository name is correct\n- You have access to the dataset\n- HF_TOKEN is set correctly"
@gr.mcp.tool()
async def debug_trace(
trace_id: str,
traces_repo: str,
question: str = "Analyze this trace and explain what happened",
hf_token: Optional[str] = None,
gemini_api_key: Optional[str] = None
) -> str:
"""
Answer questions about agent traces with AI-powered debugging and analysis.
USE THIS TOOL when you need to:
- Answer questions like "Why did this fail?", "What took the most time?", "Why was X called?"
- Debug agent execution traces and understand what happened
- Identify bottlenecks and performance issues
- Get explanations about agent behavior
DO NOT use the trace:// resource for questions - use this tool instead!
The resource only returns raw OTEL JSON data without any analysis.
This tool uses Google Gemini 2.5 Pro to analyze OpenTelemetry trace data and
provide intelligent debugging insights, step-by-step breakdowns, and answers
to specific questions about execution flow.
Args:
trace_id (str): Unique identifier for the trace to analyze (e.g., "trace_abc123")
traces_repo (str): HuggingFace dataset repository containing trace data (e.g., "username/agent-traces-model-timestamp")
question (str): Specific question about the trace. Default: "Analyze this trace and explain what happened"
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
gemini_api_key (Optional[str]): Google Gemini API key. If None, uses GEMINI_API_KEY environment variable.
Returns:
str: Markdown-formatted debug analysis with step-by-step breakdown, timing information, and answer to the question
"""
try:
# Initialize Gemini client with provided key or from environment
gemini_client = GeminiClient(api_key=gemini_api_key) if gemini_api_key else GeminiClient()
# Load traces dataset
print(f"Loading traces from {traces_repo}...")
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(traces_repo, split="train", token=token)
df = pd.DataFrame(ds)
# Find the specific trace
trace_data = df[df['trace_id'] == trace_id]
if len(trace_data) == 0:
return f"❌ **Trace not found**: No trace with ID `{trace_id}` in repository `{traces_repo}`"
trace_row = trace_data.iloc[0]
# Parse spans (OpenTelemetry format)
spans = trace_row['spans']
if isinstance(spans, str):
import json
spans = json.loads(spans)
# Helper function to handle different OTEL timestamp field formats
def get_timestamp(span, field):
"""Get timestamp handling multiple OTEL formats"""
# Try different field name variations
for key in [field, f"{field}UnixNano", f"{field}_unix_nano", "timeUnixNano"]:
if key in span:
return span[key]
return 0
# Build trace analysis data
start_time = get_timestamp(spans[0], 'startTime')
end_time = get_timestamp(spans[-1], 'endTime')
trace_analysis = {
"trace_id": trace_id,
"run_id": trace_row.get('run_id', 'unknown'),
"total_duration_ms": (end_time - start_time) / 1_000_000 if end_time > start_time else 0,
"num_spans": len(spans),
"spans": []
}
# Process each span
for span in spans:
span_start = get_timestamp(span, 'startTime')
span_end = get_timestamp(span, 'endTime')
span_info = {
"name": span.get('name', 'Unknown'),
"kind": span.get('kind', 'INTERNAL'),
"duration_ms": (span_end - span_start) / 1_000_000 if span_end > span_start else 0,
"attributes": span.get('attributes', {}),
"status": span.get('status', {}).get('code', 'UNKNOWN')
}
trace_analysis["spans"].append(span_info)
# Get AI analysis from Gemini
result = await gemini_client.analyze_with_context(
data=trace_analysis,
analysis_type="trace",
specific_question=question
)
return result
except Exception as e:
return f"❌ **Error debugging trace**: {str(e)}\n\nPlease check:\n- Trace ID is correct\n- Repository name is correct\n- You have access to the dataset"
@gr.mcp.tool()
async def estimate_cost(
model: str,
agent_type: str,
num_tests: int = 100,
hardware: str = "auto",
gemini_api_key: Optional[str] = None
) -> str:
"""
Answer questions about evaluation costs with AI-powered estimates and recommendations.
USE THIS TOOL when you need to:
- Answer questions like "How much will this cost?", "What's the cheapest option?"
- Get cost predictions for running evaluations
- Compare costs between different models or hardware
- Get optimization recommendations to reduce costs
DO NOT use the cost:// resource for estimates - use this tool instead!
The resource only returns raw pricing tables without calculations.
This tool uses Google Gemini 2.5 Pro to calculate LLM API costs, HuggingFace
Jobs compute costs, CO2 emissions, and provide intelligent cost breakdowns with
optimization recommendations.
Args:
model (str): Model identifier in litellm format (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
agent_type (str): Type of agent capabilities to test. Options: "tool", "code", "both"
num_tests (int): Number of test cases to run. Must be between 10 and 1000. Default: 100
hardware (str): Hardware type for HuggingFace Jobs. Options: "auto", "cpu", "gpu_a10", "gpu_h200". Default: "auto"
gemini_api_key (Optional[str]): Google Gemini API key. If None, uses GEMINI_API_KEY environment variable.
Returns:
str: Markdown-formatted cost estimate with breakdown of LLM costs, HF Jobs costs, duration, CO2 emissions, and optimization tips
"""
try:
# Initialize Gemini client with provided key or from environment
gemini_client = GeminiClient(api_key=gemini_api_key) if gemini_api_key else GeminiClient()
# Determine if API or local model
is_api_model = any(provider in model.lower() for provider in ["openai", "anthropic", "google", "cohere"])
# Auto-select hardware
if hardware == "auto":
hardware = "cpu" if is_api_model else "gpu_a10"
# Cost data (simplified estimates)
llm_costs = {
"openai/gpt-4": {"input": 0.03, "output": 0.06}, # per 1K tokens
"openai/gpt-3.5-turbo": {"input": 0.0015, "output": 0.002},
"anthropic/claude-3-opus": {"input": 0.015, "output": 0.075},
"anthropic/claude-3-sonnet": {"input": 0.003, "output": 0.015},
"meta-llama/Llama-3.1-8B": {"input": 0, "output": 0}, # Local model
"default": {"input": 0.001, "output": 0.002}
}
hf_jobs_costs = {
"cpu": 0.60, # per hour
"gpu_a10": 1.10, # per hour
"gpu_h200": 4.50 # per hour
}
# Get model costs
model_cost = llm_costs.get(model, llm_costs["default"])
# Estimate token usage per test
# Tool agent: ~200 tokens input, ~150 output
# Code agent: ~300 tokens input, ~400 output
# Both: ~400 tokens input, ~500 output
token_estimates = {
"tool": {"input": 200, "output": 150},
"code": {"input": 300, "output": 400},
"both": {"input": 400, "output": 500}
}
tokens_per_test = token_estimates[agent_type]
# Calculate LLM costs
llm_cost_per_test = (
(tokens_per_test["input"] / 1000) * model_cost["input"] +
(tokens_per_test["output"] / 1000) * model_cost["output"]
)
total_llm_cost = llm_cost_per_test * num_tests
# Estimate duration (seconds per test)
if is_api_model:
duration_per_test = 3.0 # API models are fast
else:
duration_per_test = 8.0 # Local models slower but depends on GPU
total_duration_hours = (duration_per_test * num_tests) / 3600
# Calculate HF Jobs costs
jobs_hourly_rate = hf_jobs_costs.get(hardware, hf_jobs_costs["cpu"])
total_jobs_cost = total_duration_hours * jobs_hourly_rate
# Estimate CO2 (rough estimates)
co2_per_hour = {
"cpu": 0.05, # kg CO2
"gpu_a10": 0.15,
"gpu_h200": 0.30
}
total_co2_kg = total_duration_hours * co2_per_hour.get(hardware, 0.05)
# Prepare estimate data
estimate_data = {
"model": model,
"agent_type": agent_type,
"num_tests": num_tests,
"hardware": hardware,
"is_api_model": is_api_model,
"estimates": {
"llm_cost_usd": round(total_llm_cost, 4),
"llm_cost_per_test": round(llm_cost_per_test, 4),
"jobs_cost_usd": round(total_jobs_cost, 4),
"total_cost_usd": round(total_llm_cost + total_jobs_cost, 4),
"duration_hours": round(total_duration_hours, 2),
"duration_per_test_seconds": round(duration_per_test, 2),
"co2_emissions_kg": round(total_co2_kg, 3),
"tokens_per_test": tokens_per_test
}
}
# Get AI analysis from Gemini
result = await gemini_client.analyze_with_context(
data=estimate_data,
analysis_type="cost_estimate",
specific_question="Provide cost breakdown and optimization recommendations"
)
return result
except Exception as e:
return f"❌ **Error estimating cost**: {str(e)}"
@gr.mcp.tool()
async def compare_runs(
run_id_1: str,
run_id_2: str,
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
comparison_focus: str = "comprehensive",
hf_token: Optional[str] = None,
gemini_api_key: Optional[str] = None
) -> str:
"""
Compare two evaluation runs and generate AI-powered comparative analysis.
This tool fetches data for two evaluation runs from the leaderboard and uses
Google Gemini 2.5 Pro to provide intelligent comparison across multiple dimensions:
success rate, cost efficiency, speed, environmental impact, and use case recommendations.
Args:
run_id_1 (str): First run ID to compare
run_id_2 (str): Second run ID to compare
leaderboard_repo (str): HuggingFace dataset repository containing leaderboard data. Default: "kshitijthakkar/smoltrace-leaderboard"
comparison_focus (str): Focus area for comparison. Options: "comprehensive", "cost", "performance", "eco_friendly". Default: "comprehensive"
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
gemini_api_key (Optional[str]): Google Gemini API key. If None, uses GEMINI_API_KEY environment variable.
Returns:
str: Markdown-formatted comparative analysis with winner for each category, trade-offs, and use case recommendations
"""
try:
# Initialize Gemini client with provided key or from environment
gemini_client = GeminiClient(api_key=gemini_api_key) if gemini_api_key else GeminiClient()
# Load leaderboard data
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
dataset = load_dataset(leaderboard_repo, split="train", token=token)
df = pd.DataFrame(dataset)
# Find the two runs
run1 = df[df['run_id'] == run_id_1]
run2 = df[df['run_id'] == run_id_2]
if run1.empty:
return f"❌ **Error**: Run ID '{run_id_1}' not found in leaderboard"
if run2.empty:
return f"❌ **Error**: Run ID '{run_id_2}' not found in leaderboard"
run1_data = run1.iloc[0].to_dict()
run2_data = run2.iloc[0].to_dict()
# Build comparison context for Gemini
comparison_data = {
"run_1": {
"run_id": run1_data.get('run_id'),
"model": run1_data.get('model'),
"agent_type": run1_data.get('agent_type'),
"success_rate": run1_data.get('success_rate'),
"total_tests": run1_data.get('total_tests'),
"successful_tests": run1_data.get('successful_tests'),
"avg_duration_ms": run1_data.get('avg_duration_ms'),
"total_cost_usd": run1_data.get('total_cost_usd'),
"avg_cost_per_test_usd": run1_data.get('avg_cost_per_test_usd'),
"co2_emissions_g": run1_data.get('co2_emissions_g'),
"gpu_utilization_avg": run1_data.get('gpu_utilization_avg'),
"total_tokens": run1_data.get('total_tokens'),
"provider": run1_data.get('provider'),
"job_type": run1_data.get('job_type'),
"timestamp": run1_data.get('timestamp')
},
"run_2": {
"run_id": run2_data.get('run_id'),
"model": run2_data.get('model'),
"agent_type": run2_data.get('agent_type'),
"success_rate": run2_data.get('success_rate'),
"total_tests": run2_data.get('total_tests'),
"successful_tests": run2_data.get('successful_tests'),
"avg_duration_ms": run2_data.get('avg_duration_ms'),
"total_cost_usd": run2_data.get('total_cost_usd'),
"avg_cost_per_test_usd": run2_data.get('avg_cost_per_test_usd'),
"co2_emissions_g": run2_data.get('co2_emissions_g'),
"gpu_utilization_avg": run2_data.get('gpu_utilization_avg'),
"total_tokens": run2_data.get('total_tokens'),
"provider": run2_data.get('provider'),
"job_type": run2_data.get('job_type'),
"timestamp": run2_data.get('timestamp')
},
"comparison_focus": comparison_focus
}
# Create comparison prompt based on focus
if comparison_focus == "comprehensive":
prompt = f"""
You are analyzing a comparison between two agent evaluation runs. Provide a comprehensive analysis covering all aspects.
**Run 1 ({comparison_data['run_1']['model']}):**
{json.dumps(comparison_data['run_1'], indent=2)}
**Run 2 ({comparison_data['run_2']['model']}):**
{json.dumps(comparison_data['run_2'], indent=2)}
Please provide a detailed comparison in the following format:
## 📊 Head-to-Head Comparison
### 🎯 Accuracy Winner
[Which run has better success rate and by how much? Explain significance]
### ⚡ Speed Winner
[Which run is faster and by how much? Include average duration comparison]
### 💰 Cost Winner
[Which run is more cost-effective? Compare total cost AND cost per test]
### 🌱 Eco-Friendly Winner
[Which run has lower CO2 emissions? Calculate the difference]
### 🔧 GPU Efficiency Winner (if applicable)
[For GPU jobs, which has better utilization? Explain implications]
## 📈 Performance Summary
### Run 1 Strengths
- [List 3-4 key strengths]
### Run 2 Strengths
- [List 3-4 key strengths]
## 💡 Use Case Recommendations
### When to Choose Run 1 ({comparison_data['run_1']['model']})
[Specific scenarios where Run 1 is the better choice]
### When to Choose Run 2 ({comparison_data['run_2']['model']})
[Specific scenarios where Run 2 is the better choice]
## ⚖️ Overall Recommendation
[Based on the analysis, provide a balanced recommendation considering different priorities]
Be specific with numbers and percentages. Make the comparison actionable and insightful.
"""
elif comparison_focus == "cost":
prompt = f"""
Compare these two evaluation runs focusing specifically on cost efficiency:
**Run 1:** {json.dumps(comparison_data['run_1'], indent=2)}
**Run 2:** {json.dumps(comparison_data['run_2'], indent=2)}
Provide detailed cost analysis:
1. Which run has lower total cost and by what percentage?
2. Cost per test comparison - which is more efficient?
3. Calculate cost per successful test (accounting for failures)
4. Token usage efficiency - cost per 1000 tokens
5. ROI analysis - is higher cost justified by better accuracy?
6. Scaling implications - at 1000 tests, what would each cost?
Provide actionable cost optimization recommendations.
"""
elif comparison_focus == "performance":
prompt = f"""
Compare these two evaluation runs focusing on performance (speed + accuracy):
**Run 1:** {json.dumps(comparison_data['run_1'], indent=2)}
**Run 2:** {json.dumps(comparison_data['run_2'], indent=2)}
Analyze:
1. Success rate difference - statistical significance?
2. Speed comparison - average duration per test
3. Which delivers faster results without sacrificing accuracy?
4. Throughput analysis - tests per minute
5. Quality vs Speed trade-off assessment
6. GPU utilization efficiency (if applicable)
Recommend which run offers best performance for production workloads.
"""
elif comparison_focus == "eco_friendly":
prompt = f"""
Compare these two evaluation runs focusing on environmental impact:
**Run 1:** {json.dumps(comparison_data['run_1'], indent=2)}
**Run 2:** {json.dumps(comparison_data['run_2'], indent=2)}
Analyze:
1. CO2 emissions comparison - which is greener?
2. Emissions per test and per successful test
3. GPU vs API model environmental trade-offs
4. Energy efficiency based on duration and GPU utilization
5. Emissions reduction if scaled to 10,000 tests
6. Carbon offset cost comparison
Provide eco-conscious recommendations for sustainable AI deployment.
"""
# Get AI analysis from Gemini
analysis = await gemini_client.analyze_with_context(
comparison_data,
analysis_type="comparison",
specific_question=prompt
)
return analysis
except Exception as e:
return f"❌ **Error comparing runs**: {str(e)}"
@gr.mcp.tool()
async def analyze_results(
results_repo: str,
analysis_focus: str = "comprehensive",
max_rows: int = 100,
hf_token: Optional[str] = None,
gemini_api_key: Optional[str] = None
) -> str:
"""
Analyze detailed test results and provide optimization recommendations.
USE THIS TOOL when you need to:
- Understand why tests are failing and get recommendations
- Identify performance bottlenecks in specific test cases
- Find cost optimization opportunities
- Get insights about tool usage patterns
- Analyze which types of tasks work well vs poorly
This tool analyzes individual test case results (not aggregate leaderboard data)
and uses Google Gemini 2.5 Pro to provide actionable optimization recommendations.
Args:
results_repo (str): HuggingFace dataset repository containing results (e.g., "username/smoltrace-results-gpt4-20251114")
analysis_focus (str): Focus area. Options: "failures", "performance", "cost", "comprehensive". Default: "comprehensive"
max_rows (int): Maximum test cases to analyze. Default: 100. Range: 10-500
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
gemini_api_key (Optional[str]): Google Gemini API key. If None, uses GEMINI_API_KEY environment variable.
Returns:
str: Markdown-formatted analysis with failure patterns, performance insights, cost analysis, and optimization recommendations
"""
try:
# Initialize Gemini client
gemini_client = GeminiClient(api_key=gemini_api_key) if gemini_api_key else GeminiClient()
# Load results dataset
print(f"Loading results from {results_repo}...")
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(results_repo, split="train", token=token)
df = pd.DataFrame(ds)
if df.empty:
return "❌ **Error**: Results dataset is empty"
# Limit rows
max_rows = max(10, min(500, max_rows))
df_sample = df.head(max_rows)
# Calculate statistics
total_tests = len(df_sample)
successful = df_sample[df_sample['success'] == True]
failed = df_sample[df_sample['success'] == False]
success_rate = (len(successful) / total_tests * 100) if total_tests > 0 else 0
# Analyze by category/difficulty
category_stats = {}
if 'category' in df_sample.columns:
category_stats = df_sample.groupby('category').agg({
'success': ['count', 'sum', 'mean'],
'execution_time_ms': 'mean',
'cost_usd': 'sum'
}).to_dict()
difficulty_stats = {}
if 'difficulty' in df_sample.columns:
difficulty_stats = df_sample.groupby('difficulty').agg({
'success': ['count', 'sum', 'mean'],
'execution_time_ms': 'mean'
}).to_dict()
# Find slowest tests
slowest_tests = df_sample.nlargest(5, 'execution_time_ms')[
['task_id', 'prompt', 'execution_time_ms', 'success', 'cost_usd']
].to_dict('records')
# Find most expensive tests
if 'cost_usd' in df_sample.columns:
most_expensive = df_sample.nlargest(5, 'cost_usd')[
['task_id', 'prompt', 'cost_usd', 'total_tokens', 'success']
].to_dict('records')
else:
most_expensive = []
# Analyze failures
failure_analysis = []
if len(failed) > 0:
# Get sample of failures
failure_sample = failed.head(10)[
['task_id', 'prompt', 'error', 'error_type', 'tool_called', 'expected_tool']
].to_dict('records')
# Count error types
if 'error_type' in failed.columns:
error_type_counts = failed['error_type'].value_counts().to_dict()
else:
error_type_counts = {}
failure_analysis = {
"total_failures": len(failed),
"failure_rate": (len(failed) / total_tests * 100),
"error_type_counts": error_type_counts,
"sample_failures": failure_sample
}
# Prepare data for Gemini analysis
analysis_data = {
"results_repo": results_repo,
"total_tests_analyzed": total_tests,
"overall_stats": {
"success_rate": round(success_rate, 2),
"successful_tests": len(successful),
"failed_tests": len(failed),
"avg_execution_time_ms": float(df_sample['execution_time_ms'].mean()),
"total_cost_usd": float(df_sample['cost_usd'].sum()) if 'cost_usd' in df_sample.columns else 0,
"avg_tokens_per_test": float(df_sample['total_tokens'].mean()) if 'total_tokens' in df_sample.columns else 0
},
"category_performance": category_stats,
"difficulty_performance": difficulty_stats,
"slowest_tests": slowest_tests,
"most_expensive_tests": most_expensive,
"failure_analysis": failure_analysis,
"analysis_focus": analysis_focus
}
# Create focus-specific prompt
focus_prompts = {
"failures": "Focus specifically on failure patterns. Analyze why tests are failing, identify common error types, and provide actionable recommendations to improve success rate.",
"performance": "Focus on performance optimization. Analyze execution times, identify bottlenecks, and recommend ways to speed up test execution.",
"cost": "Focus on cost optimization. Analyze token usage and costs, identify expensive tests, and recommend ways to reduce evaluation costs.",
"comprehensive": "Provide comprehensive analysis covering failures, performance, cost, and overall optimization opportunities."
}
specific_question = focus_prompts.get(analysis_focus, focus_prompts["comprehensive"])
# Get AI analysis
result = await gemini_client.analyze_with_context(
data=analysis_data,
analysis_type="results",
specific_question=specific_question
)
return result
except Exception as e:
return f"❌ **Error analyzing results**: {str(e)}\n\nPlease check:\n- Repository name is correct (should be smoltrace-results-*)\n- You have access to the dataset\n- HF_TOKEN is set correctly"
@gr.mcp.tool()
async def get_dataset(
dataset_repo: str,
max_rows: int = 50,
hf_token: Optional[str] = None
) -> str:
"""
Load SMOLTRACE datasets from HuggingFace and return as JSON.
This tool loads datasets with the "smoltrace-" prefix and returns the raw data
as JSON. Use this to access:
- Leaderboard data (kshitijthakkar/smoltrace-leaderboard)
- Results datasets (e.g., username/smoltrace-results-*)
- Traces datasets (e.g., username/smoltrace-traces-*)
- Metrics datasets (e.g., username/smoltrace-metrics-*)
- Any other smoltrace-prefixed evaluation dataset
If you don't know which dataset to load, first load the leaderboard to see
the dataset references in the results_dataset, traces_dataset, metrics_dataset,
and dataset_used fields.
Args:
dataset_repo (str): HuggingFace dataset repository path with "smoltrace-" prefix (e.g., "kshitijthakkar/smoltrace-leaderboard")
max_rows (int): Maximum number of rows to return. Default: 50. Range: 1-200
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: JSON object with dataset data and metadata
"""
try:
# Validate dataset has smoltrace- prefix
if "smoltrace-" not in dataset_repo:
return json.dumps({
"dataset_repo": dataset_repo,
"error": "Only datasets with 'smoltrace-' prefix are allowed. Please use smoltrace-leaderboard or other smoltrace-* datasets.",
"data": []
}, indent=2)
# Load dataset from HuggingFace
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
dataset = load_dataset(dataset_repo, split="train", token=token)
df = pd.DataFrame(dataset)
if df.empty:
return json.dumps({
"dataset_repo": dataset_repo,
"error": "Dataset is empty",
"total_rows": 0,
"data": []
}, indent=2)
# Get total row count before limiting
total_rows = len(df)
# Limit rows to avoid overwhelming the context
max_rows = max(1, min(200, max_rows))
# Sort by timestamp if available (newest first)
if "timestamp" in df.columns:
df = df.sort_values("timestamp", ascending=False)
df_limited = df.head(max_rows)
# Convert to list of dictionaries
data = df_limited.to_dict(orient="records")
# Build response with metadata
result = {
"dataset_repo": dataset_repo,
"total_rows": total_rows,
"rows_returned": len(data),
"columns": list(df.columns),
"data": data
}
return json.dumps(result, indent=2, default=str)
except Exception as e:
return json.dumps({
"dataset_repo": dataset_repo,
"error": f"Failed to load dataset: {str(e)}",
"data": []
}, indent=2)
# ============================================================================
# MCP RESOURCES - Expose data for retrieval by MCP clients
# ============================================================================
@gr.mcp.resource("leaderboard://{repo}")
def get_leaderboard_data(repo: str = "kshitijthakkar/smoltrace-leaderboard", hf_token: Optional[str] = None) -> str:
"""
[RAW DATA ONLY] Get raw leaderboard data in JSON format - NO analysis or insights.
⚠️ DO NOT USE THIS for questions like "Which model is leading?" or "What's the best model?"
Instead, use the analyze_leaderboard TOOL which provides AI-powered insights.
This resource is ONLY for:
- Getting raw JSON data when you need to process it yourself
- Low-level data access for custom analysis
- Direct dataset retrieval without AI interpretation
For questions, insights, recommendations, or analysis → use analyze_leaderboard tool instead!
Args:
repo (str): HuggingFace dataset repository name. Default: "kshitijthakkar/smoltrace-leaderboard"
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: Raw JSON string containing all evaluation runs without any analysis
"""
try:
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(repo, split="train", token=token)
df = pd.DataFrame(ds)
# Convert to JSON with proper formatting
data = df.to_dict('records')
return json.dumps({
"total_runs": len(data),
"repository": repo,
"data": data
}, indent=2)
except Exception as e:
return json.dumps({
"error": str(e),
"repository": repo
})
@gr.mcp.resource("trace://{trace_id}/{repo}")
def get_trace_data(trace_id: str, repo: str, hf_token: Optional[str] = None) -> str:
"""
[RAW DATA ONLY] Get raw OpenTelemetry trace data in JSON format - NO analysis.
⚠️ DO NOT USE THIS for questions like "Why did this fail?" or "What took the most time?"
Instead, use the debug_trace TOOL which provides AI-powered debugging and insights.
This resource is ONLY for:
- Getting raw OTEL span data when you need to process it yourself
- Low-level trace access for custom analysis
- Direct dataset retrieval without AI interpretation
For debugging, questions, or analysis → use debug_trace tool instead!
Args:
trace_id (str): Unique identifier for the trace (e.g., "trace_abc123")
repo (str): HuggingFace dataset repository containing traces (e.g., "username/agent-traces-model")
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: Raw JSON string containing OpenTelemetry spans without any analysis
"""
try:
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(repo, split="train", token=token)
df = pd.DataFrame(ds)
# Find specific trace
trace_data = df[df['trace_id'] == trace_id]
if len(trace_data) == 0:
return json.dumps({
"error": f"Trace {trace_id} not found",
"trace_id": trace_id,
"repository": repo
})
trace_row = trace_data.iloc[0]
# Parse spans if they're stored as string
spans = trace_row['spans']
if isinstance(spans, str):
spans = json.loads(spans)
return json.dumps({
"trace_id": trace_id,
"repository": repo,
"run_id": trace_row.get('run_id', 'unknown'),
"spans": spans
}, indent=2)
except Exception as e:
return json.dumps({
"error": str(e),
"trace_id": trace_id,
"repository": repo
})
@gr.mcp.resource("cost://model/{model_name}")
def get_cost_data(model_name: str) -> str:
"""
[RAW DATA ONLY] Get raw pricing data for a model in JSON format - NO estimates or analysis.
⚠️ DO NOT USE THIS for questions like "How much will this cost?" or "What's the best value?"
Instead, use the estimate_cost TOOL which provides AI-powered cost estimates and recommendations.
This resource is ONLY for:
- Getting raw pricing tables when you need to process them yourself
- Looking up base rates for models and hardware
- Direct price data retrieval without calculations
For cost estimates, predictions, or recommendations → use estimate_cost tool instead!
Args:
model_name (str): Model identifier (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
Returns:
str: Raw JSON string with pricing rates without any cost estimation
"""
# Cost database
llm_costs = {
"openai/gpt-4": {
"input_per_1k_tokens": 0.03,
"output_per_1k_tokens": 0.06,
"type": "api",
"provider": "openai"
},
"openai/gpt-3.5-turbo": {
"input_per_1k_tokens": 0.0015,
"output_per_1k_tokens": 0.002,
"type": "api",
"provider": "openai"
},
"anthropic/claude-3-opus": {
"input_per_1k_tokens": 0.015,
"output_per_1k_tokens": 0.075,
"type": "api",
"provider": "anthropic"
},
"anthropic/claude-3-sonnet": {
"input_per_1k_tokens": 0.003,
"output_per_1k_tokens": 0.015,
"type": "api",
"provider": "anthropic"
},
"meta-llama/Llama-3.1-8B": {
"input_per_1k_tokens": 0,
"output_per_1k_tokens": 0,
"type": "local",
"provider": "meta",
"requires_gpu": True,
"recommended_hardware": "gpu_a10"
}
}
hardware_costs = {
"cpu": {"hourly_rate_usd": 0.60, "type": "cpu"},
"gpu_a10": {"hourly_rate_usd": 1.10, "type": "gpu", "model": "A10"},
"gpu_h200": {"hourly_rate_usd": 4.50, "type": "gpu", "model": "H200"}
}
model_cost = llm_costs.get(model_name)
if model_cost:
return json.dumps({
"model": model_name,
"cost_data": model_cost,
"hardware_options": hardware_costs,
"currency": "USD"
}, indent=2)
else:
return json.dumps({
"model": model_name,
"error": "Model not found in cost database",
"available_models": list(llm_costs.keys()),
"hardware_options": hardware_costs
}, indent=2)
# ============================================================================
# MCP PROMPTS - Reusable prompt templates for common workflows
# ============================================================================
@gr.mcp.prompt()
def analysis_prompt(
analysis_type: str = "leaderboard",
focus_area: str = "overall",
detail_level: str = "detailed"
) -> str:
"""
Generate a prompt template for analyzing agent evaluation data.
This prompt helps standardize analysis requests across different
evaluation data types and focus areas.
Args:
analysis_type (str): Type of analysis. Options: "leaderboard", "trace", "cost". Default: "leaderboard"
focus_area (str): What to focus on. Options: "overall", "performance", "cost", "efficiency". Default: "overall"
detail_level (str): Level of detail. Options: "summary", "detailed", "comprehensive". Default: "detailed"
Returns:
str: Formatted prompt template for analysis
"""
templates = {
"leaderboard": {
"overall": "Analyze the agent evaluation leaderboard data comprehensively. Identify top performers across all metrics (accuracy, cost, latency, CO2), explain trade-offs between different approaches, and provide actionable recommendations for model selection.",
"performance": "Focus on performance metrics in the leaderboard. Compare success rates and accuracy across different models and agent types. Identify which configurations achieve the highest success rates and explain why.",
"cost": "Analyze cost efficiency in the leaderboard. Compare costs across different models and identify the best cost-performance ratios. Recommend the most cost-effective configurations for different use cases.",
"efficiency": "Evaluate efficiency metrics including latency, GPU utilization, and CO2 emissions. Identify the most efficient models and explain how to optimize for speed while maintaining quality."
},
"trace": {
"overall": "Analyze this agent execution trace comprehensively. Explain the sequence of operations, identify any bottlenecks or inefficiencies, and suggest optimizations.",
"performance": "Focus on performance aspects of this trace. Identify which steps took the most time, explain why, and suggest ways to improve execution speed.",
"cost": "Analyze the cost implications of this trace execution. Break down token usage and API calls, calculate costs, and suggest ways to reduce expenses.",
"efficiency": "Evaluate the efficiency of this trace. Identify redundant operations, suggest ways to optimize the execution flow, and recommend best practices."
},
"cost": {
"overall": "Analyze the cost estimation comprehensively. Break down LLM API costs, infrastructure costs, and provide optimization recommendations.",
"performance": "Focus on the cost-performance trade-off. Compare different hardware options and explain which provides the best value.",
"cost": "Deep dive into cost breakdown. Explain each cost component in detail and provide specific recommendations for cost reduction.",
"efficiency": "Analyze cost efficiency. Compare different model configurations and recommend the most cost-effective approach for the given use case."
}
}
detail_prefixes = {
"summary": "Provide a brief, high-level summary. ",
"detailed": "Provide a detailed analysis with specific insights. ",
"comprehensive": "Provide a comprehensive, in-depth analysis with detailed recommendations. "
}
prefix = detail_prefixes.get(detail_level, detail_prefixes["detailed"])
template = templates.get(analysis_type, {}).get(focus_area, templates["leaderboard"]["overall"])
return f"{prefix}{template}"
@gr.mcp.prompt()
def debug_prompt(
debug_type: str = "error",
context: str = "agent_execution"
) -> str:
"""
Generate a prompt template for debugging agent traces.
This prompt helps standardize debugging requests for different
types of issues and contexts.
Args:
debug_type (str): Type of debugging. Options: "error", "performance", "behavior", "optimization". Default: "error"
context (str): Execution context. Options: "agent_execution", "tool_calling", "llm_reasoning". Default: "agent_execution"
Returns:
str: Formatted prompt template for debugging
"""
templates = {
"error": {
"agent_execution": "Debug this agent execution trace to identify why it failed. Analyze each step in the execution flow, identify where the error occurred, explain the root cause, and suggest how to fix it.",
"tool_calling": "Debug this tool calling sequence. Identify which tool call failed or produced unexpected results, explain why it happened, and suggest corrections.",
"llm_reasoning": "Debug the LLM reasoning in this trace. Analyze the prompts and responses, identify where the reasoning went wrong, and suggest improvements to the prompts or approach."
},
"performance": {
"agent_execution": "Analyze this trace for performance issues. Identify bottlenecks, measure time spent in each component, and recommend optimizations to improve execution speed.",
"tool_calling": "Analyze tool calling performance. Identify which tools are slow, explain why, and suggest ways to optimize tool execution or caching.",
"llm_reasoning": "Analyze LLM reasoning efficiency. Identify unnecessary calls, redundant reasoning steps, and suggest ways to streamline the reasoning process."
},
"behavior": {
"agent_execution": "Analyze the agent's behavior in this trace. Explain why the agent made certain decisions, whether the behavior is expected, and suggest improvements if needed.",
"tool_calling": "Analyze tool selection behavior. Explain why certain tools were called, whether the choices were optimal, and suggest alternative approaches if applicable.",
"llm_reasoning": "Analyze the LLM's reasoning patterns. Explain the logic flow, identify any unexpected reasoning, and suggest how to guide the model toward better decisions."
},
"optimization": {
"agent_execution": "Analyze this trace for optimization opportunities. Identify redundant operations, suggest caching strategies, and recommend ways to reduce costs and improve efficiency.",
"tool_calling": "Optimize tool usage in this trace. Suggest ways to reduce tool calls, batch operations, or use more efficient alternatives.",
"llm_reasoning": "Optimize LLM usage. Suggest ways to reduce token usage, improve prompt efficiency, and achieve the same results with lower costs."
}
}
template = templates.get(debug_type, {}).get(context, templates["error"]["agent_execution"])
return template
@gr.mcp.prompt()
def optimization_prompt(
optimization_goal: str = "cost",
constraints: str = "maintain_quality"
) -> str:
"""
Generate a prompt template for optimization recommendations.
This prompt helps standardize optimization requests for different
goals and constraints.
Args:
optimization_goal (str): What to optimize. Options: "cost", "speed", "quality", "efficiency". Default: "cost"
constraints (str): Constraints to consider. Options: "maintain_quality", "maintain_speed", "no_constraints". Default: "maintain_quality"
Returns:
str: Formatted prompt template for optimization
"""
templates = {
"cost": {
"maintain_quality": "Analyze this evaluation setup and recommend cost optimizations while maintaining quality. Consider cheaper models, optimized prompts, caching strategies, and hardware selection. Quantify potential savings.",
"maintain_speed": "Recommend cost optimizations while maintaining execution speed. Consider model alternatives, batch processing, and infrastructure choices that reduce costs without adding latency.",
"no_constraints": "Recommend aggressive cost optimizations. Identify all opportunities to reduce expenses, even if it means trade-offs in quality or speed. Prioritize maximum cost reduction."
},
"speed": {
"maintain_quality": "Recommend speed optimizations while maintaining quality. Consider parallel execution, caching, faster models with similar accuracy, and infrastructure upgrades. Quantify potential speedups.",
"maintain_cost": "Recommend speed optimizations within the current cost budget. Suggest configuration changes, caching strategies, and optimizations that don't increase expenses.",
"no_constraints": "Recommend aggressive speed optimizations. Identify all opportunities to reduce latency, even if it increases costs. Prioritize maximum performance."
},
"quality": {
"maintain_cost": "Recommend quality improvements within the current cost budget. Suggest better prompts, model configurations, and strategies that improve accuracy without increasing expenses.",
"maintain_speed": "Recommend quality improvements while maintaining execution speed. Suggest prompt improvements, reasoning enhancements, and configurations that improve accuracy without adding latency.",
"no_constraints": "Recommend quality improvements without budget constraints. Suggest the best models, optimal configurations, and strategies to maximize accuracy and success rates."
},
"efficiency": {
"maintain_quality": "Recommend overall efficiency improvements. Optimize for the best cost-speed-quality balance. Identify waste, suggest streamlined processes, and provide holistic optimization strategies.",
"maintain_cost": "Recommend efficiency improvements within budget. Focus on reducing waste, optimizing resource usage, and getting better results with the same cost.",
"maintain_speed": "Recommend efficiency improvements maintaining speed. Reduce unnecessary operations, optimize resource usage, and improve output quality without adding latency."
}
}
# Handle constraint variations
if constraints == "maintain_quality" and optimization_goal == "speed":
constraints = "maintain_quality" # Use existing template
elif constraints == "maintain_speed" and optimization_goal == "cost":
constraints = "maintain_speed" # Use existing template
template = templates.get(optimization_goal, {}).get(constraints, templates["cost"]["maintain_quality"])
return template
|