File size: 41,024 Bytes
a3116de |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 |
"""
MCP Tool Implementations for TraceMind
Implements:
- 5 MCP Tools: analyze_leaderboard, debug_trace, estimate_cost, compare_runs, get_dataset
- 3 MCP Resources: leaderboard data, trace data, cost data
- 3 MCP Prompts: analysis prompts, debug prompts, optimization prompts
With Gradio's native MCP support (mcp_server=True), these are automatically
exposed based on decorators (@gr.mcp.tool, @gr.mcp.resource, @gr.mcp.prompt),
docstrings, and type hints.
"""
import os
import json
from typing import Optional
from datasets import load_dataset
import pandas as pd
from datetime import datetime, timedelta
import gradio as gr
from gemini_client import GeminiClient
async def analyze_leaderboard(
gemini_client: GeminiClient,
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
metric_focus: str = "overall",
time_range: str = "last_week",
top_n: int = 5,
hf_token: Optional[str] = None
) -> str:
"""
Analyze evaluation leaderboard and generate AI-powered insights.
This tool loads agent evaluation data from HuggingFace datasets and uses
Google Gemini 2.5 Pro to provide intelligent analysis of top performers,
trends, cost/performance trade-offs, and actionable recommendations.
Args:
gemini_client (GeminiClient): Initialized Gemini client for AI analysis
leaderboard_repo (str): HuggingFace dataset repository containing leaderboard data. Default: "kshitijthakkar/smoltrace-leaderboard"
metric_focus (str): Primary metric to focus analysis on. Options: "overall", "accuracy", "cost", "latency", "co2". Default: "overall"
time_range (str): Time range for analysis. Options: "last_week", "last_month", "all_time". Default: "last_week"
top_n (int): Number of top models to highlight in analysis. Must be between 3 and 10. Default: 5
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: Markdown-formatted analysis with top performers, insights, trade-offs, and recommendations
"""
try:
# Load leaderboard data from HuggingFace
print(f"Loading leaderboard from {leaderboard_repo}...")
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(leaderboard_repo, split="train", token=token)
df = pd.DataFrame(ds)
# Filter by time range
if time_range != "all_time":
df['timestamp'] = pd.to_datetime(df['timestamp'])
now = datetime.now()
if time_range == "last_week":
cutoff = now - timedelta(days=7)
elif time_range == "last_month":
cutoff = now - timedelta(days=30)
df = df[df['timestamp'] >= cutoff]
# Sort by metric
metric_column_map = {
"overall": "success_rate",
"accuracy": "success_rate",
"cost": "total_cost_usd",
"latency": "avg_duration_ms",
"co2": "co2_emissions_g"
}
sort_column = metric_column_map.get(metric_focus, "success_rate")
ascending = metric_focus in ["cost", "latency", "co2"] # Lower is better for these
df_sorted = df.sort_values(sort_column, ascending=ascending)
# Get top N
top_models = df_sorted.head(top_n)
# Prepare data summary for Gemini
analysis_data = {
"total_evaluations": len(df),
"time_range": time_range,
"metric_focus": metric_focus,
"top_models": top_models[[
"model", "agent_type", "provider",
"success_rate", "total_cost_usd", "avg_duration_ms",
"co2_emissions_g", "submitted_by"
]].to_dict('records'),
"summary_stats": {
"avg_success_rate": float(df['success_rate'].mean()),
"avg_cost": float(df['total_cost_usd'].mean()),
"avg_duration_ms": float(df['avg_duration_ms'].mean()),
"total_co2_g": float(df['co2_emissions_g'].sum()),
"models_tested": df['model'].nunique(),
"unique_submitters": df['submitted_by'].nunique()
}
}
# Get AI analysis from Gemini
result = await gemini_client.analyze_with_context(
data=analysis_data,
analysis_type="leaderboard",
specific_question=f"Focus on {metric_focus} performance. What are the key insights?"
)
return result
except Exception as e:
return f"β **Error analyzing leaderboard**: {str(e)}\n\nPlease check:\n- Repository name is correct\n- You have access to the dataset\n- HF_TOKEN is set correctly"
async def debug_trace(
gemini_client: GeminiClient,
trace_id: str,
traces_repo: str,
question: str = "Analyze this trace and explain what happened",
hf_token: Optional[str] = None
) -> str:
"""
Debug a specific agent execution trace using OpenTelemetry data.
This tool analyzes OpenTelemetry trace data from agent executions and uses
Google Gemini 2.5 Pro to answer specific questions about the execution flow,
identify bottlenecks, and explain agent behavior.
Args:
gemini_client (GeminiClient): Initialized Gemini client for AI analysis
trace_id (str): Unique identifier for the trace to analyze (e.g., "trace_abc123")
traces_repo (str): HuggingFace dataset repository containing trace data (e.g., "username/agent-traces-model-timestamp")
question (str): Specific question about the trace. Default: "Analyze this trace and explain what happened"
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: Markdown-formatted debug analysis with step-by-step breakdown, timing information, and answer to the question
"""
try:
# Load traces dataset
print(f"Loading traces from {traces_repo}...")
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(traces_repo, split="train", token=token)
df = pd.DataFrame(ds)
# Find the specific trace
trace_data = df[df['trace_id'] == trace_id]
if len(trace_data) == 0:
return f"β **Trace not found**: No trace with ID `{trace_id}` in repository `{traces_repo}`"
trace_row = trace_data.iloc[0]
# Parse spans (OpenTelemetry format)
spans = trace_row['spans']
if isinstance(spans, str):
import json
spans = json.loads(spans)
# Helper function to handle different OTEL timestamp field formats
def get_timestamp(span, field):
"""Get timestamp handling multiple OTEL formats"""
# Try different field name variations
for key in [field, f"{field}UnixNano", f"{field}_unix_nano", "timeUnixNano"]:
if key in span:
return span[key]
return 0
# Build trace analysis data
start_time = get_timestamp(spans[0], 'startTime')
end_time = get_timestamp(spans[-1], 'endTime')
trace_analysis = {
"trace_id": trace_id,
"run_id": trace_row.get('run_id', 'unknown'),
"total_duration_ms": (end_time - start_time) / 1_000_000 if end_time > start_time else 0,
"num_spans": len(spans),
"spans": []
}
# Process each span
for span in spans:
span_start = get_timestamp(span, 'startTime')
span_end = get_timestamp(span, 'endTime')
span_info = {
"name": span.get('name', 'Unknown'),
"kind": span.get('kind', 'INTERNAL'),
"duration_ms": (span_end - span_start) / 1_000_000 if span_end > span_start else 0,
"attributes": span.get('attributes', {}),
"status": span.get('status', {}).get('code', 'UNKNOWN')
}
trace_analysis["spans"].append(span_info)
# Get AI analysis from Gemini
result = await gemini_client.analyze_with_context(
data=trace_analysis,
analysis_type="trace",
specific_question=question
)
return result
except Exception as e:
return f"β **Error debugging trace**: {str(e)}\n\nPlease check:\n- Trace ID is correct\n- Repository name is correct\n- You have access to the dataset"
async def estimate_cost(
gemini_client: GeminiClient,
model: str,
agent_type: str,
num_tests: int = 100,
hardware: str = "auto"
) -> str:
"""
Estimate the cost, duration, and CO2 emissions of running agent evaluations.
This tool predicts costs before running evaluations by calculating LLM API costs,
HuggingFace Jobs compute costs, and CO2 emissions. Uses Google Gemini 2.5 Pro
to provide cost breakdown and optimization recommendations.
Args:
gemini_client (GeminiClient): Initialized Gemini client for AI analysis
model (str): Model identifier in litellm format (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
agent_type (str): Type of agent capabilities to test. Options: "tool", "code", "both"
num_tests (int): Number of test cases to run. Must be between 10 and 1000. Default: 100
hardware (str): Hardware type for HuggingFace Jobs. Options: "auto", "cpu", "gpu_a10", "gpu_h200". Default: "auto"
Returns:
str: Markdown-formatted cost estimate with breakdown of LLM costs, HF Jobs costs, duration, CO2 emissions, and optimization tips
"""
try:
# Determine if API or local model
is_api_model = any(provider in model.lower() for provider in ["openai", "anthropic", "google", "cohere"])
# Auto-select hardware
if hardware == "auto":
hardware = "cpu" if is_api_model else "gpu_a10"
# Cost data (simplified estimates)
llm_costs = {
"openai/gpt-4": {"input": 0.03, "output": 0.06}, # per 1K tokens
"openai/gpt-3.5-turbo": {"input": 0.0015, "output": 0.002},
"anthropic/claude-3-opus": {"input": 0.015, "output": 0.075},
"anthropic/claude-3-sonnet": {"input": 0.003, "output": 0.015},
"meta-llama/Llama-3.1-8B": {"input": 0, "output": 0}, # Local model
"default": {"input": 0.001, "output": 0.002}
}
hf_jobs_costs = {
"cpu": 0.60, # per hour
"gpu_a10": 1.10, # per hour
"gpu_h200": 4.50 # per hour
}
# Get model costs
model_cost = llm_costs.get(model, llm_costs["default"])
# Estimate token usage per test
# Tool agent: ~200 tokens input, ~150 output
# Code agent: ~300 tokens input, ~400 output
# Both: ~400 tokens input, ~500 output
token_estimates = {
"tool": {"input": 200, "output": 150},
"code": {"input": 300, "output": 400},
"both": {"input": 400, "output": 500}
}
tokens_per_test = token_estimates[agent_type]
# Calculate LLM costs
llm_cost_per_test = (
(tokens_per_test["input"] / 1000) * model_cost["input"] +
(tokens_per_test["output"] / 1000) * model_cost["output"]
)
total_llm_cost = llm_cost_per_test * num_tests
# Estimate duration (seconds per test)
if is_api_model:
duration_per_test = 3.0 # API models are fast
else:
duration_per_test = 8.0 # Local models slower but depends on GPU
total_duration_hours = (duration_per_test * num_tests) / 3600
# Calculate HF Jobs costs
jobs_hourly_rate = hf_jobs_costs.get(hardware, hf_jobs_costs["cpu"])
total_jobs_cost = total_duration_hours * jobs_hourly_rate
# Estimate CO2 (rough estimates)
co2_per_hour = {
"cpu": 0.05, # kg CO2
"gpu_a10": 0.15,
"gpu_h200": 0.30
}
total_co2_kg = total_duration_hours * co2_per_hour.get(hardware, 0.05)
# Prepare estimate data
estimate_data = {
"model": model,
"agent_type": agent_type,
"num_tests": num_tests,
"hardware": hardware,
"is_api_model": is_api_model,
"estimates": {
"llm_cost_usd": round(total_llm_cost, 4),
"llm_cost_per_test": round(llm_cost_per_test, 4),
"jobs_cost_usd": round(total_jobs_cost, 4),
"total_cost_usd": round(total_llm_cost + total_jobs_cost, 4),
"duration_hours": round(total_duration_hours, 2),
"duration_per_test_seconds": round(duration_per_test, 2),
"co2_emissions_kg": round(total_co2_kg, 3),
"tokens_per_test": tokens_per_test
}
}
# Get AI analysis from Gemini
result = await gemini_client.analyze_with_context(
data=estimate_data,
analysis_type="cost_estimate",
specific_question="Provide cost breakdown and optimization recommendations"
)
return result
except Exception as e:
return f"β **Error estimating cost**: {str(e)}"
async def compare_runs(
gemini_client: GeminiClient,
run_id_1: str,
run_id_2: str,
leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
comparison_focus: str = "comprehensive",
hf_token: Optional[str] = None
) -> str:
"""
Compare two evaluation runs and generate AI-powered comparative analysis.
This tool fetches data for two evaluation runs from the leaderboard and uses
Google Gemini 2.5 Pro to provide intelligent comparison across multiple dimensions:
success rate, cost efficiency, speed, environmental impact, and use case recommendations.
Args:
gemini_client (GeminiClient): Initialized Gemini client for AI analysis
run_id_1 (str): First run ID to compare
run_id_2 (str): Second run ID to compare
leaderboard_repo (str): HuggingFace dataset repository containing leaderboard data. Default: "kshitijthakkar/smoltrace-leaderboard"
comparison_focus (str): Focus area for comparison. Options: "comprehensive", "cost", "performance", "eco_friendly". Default: "comprehensive"
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: Markdown-formatted comparative analysis with winner for each category, trade-offs, and use case recommendations
"""
try:
# Load leaderboard data
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
dataset = load_dataset(leaderboard_repo, split="train", token=token)
df = pd.DataFrame(dataset)
# Find the two runs
run1 = df[df['run_id'] == run_id_1]
run2 = df[df['run_id'] == run_id_2]
if run1.empty:
return f"β **Error**: Run ID '{run_id_1}' not found in leaderboard"
if run2.empty:
return f"β **Error**: Run ID '{run_id_2}' not found in leaderboard"
run1_data = run1.iloc[0].to_dict()
run2_data = run2.iloc[0].to_dict()
# Build comparison context for Gemini
comparison_data = {
"run_1": {
"run_id": run1_data.get('run_id'),
"model": run1_data.get('model'),
"agent_type": run1_data.get('agent_type'),
"success_rate": run1_data.get('success_rate'),
"total_tests": run1_data.get('total_tests'),
"successful_tests": run1_data.get('successful_tests'),
"avg_duration_ms": run1_data.get('avg_duration_ms'),
"total_cost_usd": run1_data.get('total_cost_usd'),
"avg_cost_per_test_usd": run1_data.get('avg_cost_per_test_usd'),
"co2_emissions_g": run1_data.get('co2_emissions_g'),
"gpu_utilization_avg": run1_data.get('gpu_utilization_avg'),
"total_tokens": run1_data.get('total_tokens'),
"provider": run1_data.get('provider'),
"job_type": run1_data.get('job_type'),
"timestamp": run1_data.get('timestamp')
},
"run_2": {
"run_id": run2_data.get('run_id'),
"model": run2_data.get('model'),
"agent_type": run2_data.get('agent_type'),
"success_rate": run2_data.get('success_rate'),
"total_tests": run2_data.get('total_tests'),
"successful_tests": run2_data.get('successful_tests'),
"avg_duration_ms": run2_data.get('avg_duration_ms'),
"total_cost_usd": run2_data.get('total_cost_usd'),
"avg_cost_per_test_usd": run2_data.get('avg_cost_per_test_usd'),
"co2_emissions_g": run2_data.get('co2_emissions_g'),
"gpu_utilization_avg": run2_data.get('gpu_utilization_avg'),
"total_tokens": run2_data.get('total_tokens'),
"provider": run2_data.get('provider'),
"job_type": run2_data.get('job_type'),
"timestamp": run2_data.get('timestamp')
},
"comparison_focus": comparison_focus
}
# Create comparison prompt based on focus
if comparison_focus == "comprehensive":
prompt = f"""
You are analyzing a comparison between two agent evaluation runs. Provide a comprehensive analysis covering all aspects.
**Run 1 ({comparison_data['run_1']['model']}):**
{json.dumps(comparison_data['run_1'], indent=2)}
**Run 2 ({comparison_data['run_2']['model']}):**
{json.dumps(comparison_data['run_2'], indent=2)}
Please provide a detailed comparison in the following format:
## π Head-to-Head Comparison
### π― Accuracy Winner
[Which run has better success rate and by how much? Explain significance]
### β‘ Speed Winner
[Which run is faster and by how much? Include average duration comparison]
### π° Cost Winner
[Which run is more cost-effective? Compare total cost AND cost per test]
### π± Eco-Friendly Winner
[Which run has lower CO2 emissions? Calculate the difference]
### π§ GPU Efficiency Winner (if applicable)
[For GPU jobs, which has better utilization? Explain implications]
## π Performance Summary
### Run 1 Strengths
- [List 3-4 key strengths]
### Run 2 Strengths
- [List 3-4 key strengths]
## π‘ Use Case Recommendations
### When to Choose Run 1 ({comparison_data['run_1']['model']})
[Specific scenarios where Run 1 is the better choice]
### When to Choose Run 2 ({comparison_data['run_2']['model']})
[Specific scenarios where Run 2 is the better choice]
## βοΈ Overall Recommendation
[Based on the analysis, provide a balanced recommendation considering different priorities]
Be specific with numbers and percentages. Make the comparison actionable and insightful.
"""
elif comparison_focus == "cost":
prompt = f"""
Compare these two evaluation runs focusing specifically on cost efficiency:
**Run 1:** {json.dumps(comparison_data['run_1'], indent=2)}
**Run 2:** {json.dumps(comparison_data['run_2'], indent=2)}
Provide detailed cost analysis:
1. Which run has lower total cost and by what percentage?
2. Cost per test comparison - which is more efficient?
3. Calculate cost per successful test (accounting for failures)
4. Token usage efficiency - cost per 1000 tokens
5. ROI analysis - is higher cost justified by better accuracy?
6. Scaling implications - at 1000 tests, what would each cost?
Provide actionable cost optimization recommendations.
"""
elif comparison_focus == "performance":
prompt = f"""
Compare these two evaluation runs focusing on performance (speed + accuracy):
**Run 1:** {json.dumps(comparison_data['run_1'], indent=2)}
**Run 2:** {json.dumps(comparison_data['run_2'], indent=2)}
Analyze:
1. Success rate difference - statistical significance?
2. Speed comparison - average duration per test
3. Which delivers faster results without sacrificing accuracy?
4. Throughput analysis - tests per minute
5. Quality vs Speed trade-off assessment
6. GPU utilization efficiency (if applicable)
Recommend which run offers best performance for production workloads.
"""
elif comparison_focus == "eco_friendly":
prompt = f"""
Compare these two evaluation runs focusing on environmental impact:
**Run 1:** {json.dumps(comparison_data['run_1'], indent=2)}
**Run 2:** {json.dumps(comparison_data['run_2'], indent=2)}
Analyze:
1. CO2 emissions comparison - which is greener?
2. Emissions per test and per successful test
3. GPU vs API model environmental trade-offs
4. Energy efficiency based on duration and GPU utilization
5. Emissions reduction if scaled to 10,000 tests
6. Carbon offset cost comparison
Provide eco-conscious recommendations for sustainable AI deployment.
"""
# Get AI analysis from Gemini
analysis = await gemini_client.analyze_with_context(
comparison_data,
analysis_type="comparison",
specific_question=prompt
)
return analysis
except Exception as e:
return f"β **Error comparing runs**: {str(e)}"
async def get_dataset(
dataset_repo: str,
max_rows: int = 50,
hf_token: Optional[str] = None
) -> str:
"""
Load SMOLTRACE datasets from HuggingFace and return as JSON.
This tool loads datasets with the "smoltrace-" prefix and returns the raw data
as JSON. Use this to access:
- Leaderboard data (kshitijthakkar/smoltrace-leaderboard)
- Results datasets (e.g., username/smoltrace-results-*)
- Traces datasets (e.g., username/smoltrace-traces-*)
- Metrics datasets (e.g., username/smoltrace-metrics-*)
- Any other smoltrace-prefixed evaluation dataset
If you don't know which dataset to load, first load the leaderboard to see
the dataset references in the results_dataset, traces_dataset, metrics_dataset,
and dataset_used fields.
Args:
dataset_repo (str): HuggingFace dataset repository path with "smoltrace-" prefix (e.g., "kshitijthakkar/smoltrace-leaderboard")
max_rows (int): Maximum number of rows to return. Default: 50. Range: 1-200
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: JSON object with dataset data and metadata
"""
try:
# Validate dataset has smoltrace- prefix
if "smoltrace-" not in dataset_repo:
return json.dumps({
"dataset_repo": dataset_repo,
"error": "Only datasets with 'smoltrace-' prefix are allowed. Please use smoltrace-leaderboard or other smoltrace-* datasets.",
"data": []
}, indent=2)
# Load dataset from HuggingFace
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
dataset = load_dataset(dataset_repo, split="train", token=token)
df = pd.DataFrame(dataset)
if df.empty:
return json.dumps({
"dataset_repo": dataset_repo,
"error": "Dataset is empty",
"total_rows": 0,
"data": []
}, indent=2)
# Get total row count before limiting
total_rows = len(df)
# Limit rows to avoid overwhelming the context
max_rows = max(1, min(200, max_rows))
# Sort by timestamp if available (newest first)
if "timestamp" in df.columns:
df = df.sort_values("timestamp", ascending=False)
df_limited = df.head(max_rows)
# Convert to list of dictionaries
data = df_limited.to_dict(orient="records")
# Build response with metadata
result = {
"dataset_repo": dataset_repo,
"total_rows": total_rows,
"rows_returned": len(data),
"columns": list(df.columns),
"data": data
}
return json.dumps(result, indent=2, default=str)
except Exception as e:
return json.dumps({
"dataset_repo": dataset_repo,
"error": f"Failed to load dataset: {str(e)}",
"data": []
}, indent=2)
# ============================================================================
# MCP RESOURCES - Expose data for retrieval by MCP clients
# ============================================================================
@gr.mcp.resource("leaderboard://{repo}")
def get_leaderboard_data(repo: str = "kshitijthakkar/smoltrace-leaderboard", hf_token: Optional[str] = None) -> str:
"""
Get raw leaderboard data from HuggingFace dataset.
This resource provides direct access to leaderboard data in JSON format,
allowing MCP clients to retrieve and process evaluation results.
Args:
repo (str): HuggingFace dataset repository name. Default: "kshitijthakkar/smoltrace-leaderboard"
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: JSON string containing leaderboard data with all evaluation runs
"""
try:
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(repo, split="train", token=token)
df = pd.DataFrame(ds)
# Convert to JSON with proper formatting
data = df.to_dict('records')
return json.dumps({
"total_runs": len(data),
"repository": repo,
"data": data
}, indent=2)
except Exception as e:
return json.dumps({
"error": str(e),
"repository": repo
})
@gr.mcp.resource("trace://{trace_id}/{repo}")
def get_trace_data(trace_id: str, repo: str, hf_token: Optional[str] = None) -> str:
"""
Get raw trace data for a specific trace ID from HuggingFace dataset.
This resource provides direct access to OpenTelemetry trace data,
allowing MCP clients to retrieve detailed execution information.
Args:
trace_id (str): Unique identifier for the trace (e.g., "trace_abc123")
repo (str): HuggingFace dataset repository containing traces (e.g., "username/agent-traces-model")
hf_token (Optional[str]): HuggingFace token for dataset access. If None, uses HF_TOKEN environment variable.
Returns:
str: JSON string containing trace data with all spans and attributes
"""
try:
# Use user-provided token or fall back to environment variable
token = hf_token if hf_token else os.getenv("HF_TOKEN")
ds = load_dataset(repo, split="train", token=token)
df = pd.DataFrame(ds)
# Find specific trace
trace_data = df[df['trace_id'] == trace_id]
if len(trace_data) == 0:
return json.dumps({
"error": f"Trace {trace_id} not found",
"trace_id": trace_id,
"repository": repo
})
trace_row = trace_data.iloc[0]
# Parse spans if they're stored as string
spans = trace_row['spans']
if isinstance(spans, str):
spans = json.loads(spans)
return json.dumps({
"trace_id": trace_id,
"repository": repo,
"run_id": trace_row.get('run_id', 'unknown'),
"spans": spans
}, indent=2)
except Exception as e:
return json.dumps({
"error": str(e),
"trace_id": trace_id,
"repository": repo
})
@gr.mcp.resource("cost://model/{model_name}")
def get_cost_data(model_name: str) -> str:
"""
Get cost information for a specific model.
This resource provides pricing data for LLM models and hardware configurations,
helping users understand evaluation costs.
Args:
model_name (str): Model identifier (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
Returns:
str: JSON string containing cost data for the model
"""
# Cost database
llm_costs = {
"openai/gpt-4": {
"input_per_1k_tokens": 0.03,
"output_per_1k_tokens": 0.06,
"type": "api",
"provider": "openai"
},
"openai/gpt-3.5-turbo": {
"input_per_1k_tokens": 0.0015,
"output_per_1k_tokens": 0.002,
"type": "api",
"provider": "openai"
},
"anthropic/claude-3-opus": {
"input_per_1k_tokens": 0.015,
"output_per_1k_tokens": 0.075,
"type": "api",
"provider": "anthropic"
},
"anthropic/claude-3-sonnet": {
"input_per_1k_tokens": 0.003,
"output_per_1k_tokens": 0.015,
"type": "api",
"provider": "anthropic"
},
"meta-llama/Llama-3.1-8B": {
"input_per_1k_tokens": 0,
"output_per_1k_tokens": 0,
"type": "local",
"provider": "meta",
"requires_gpu": True,
"recommended_hardware": "gpu_a10"
}
}
hardware_costs = {
"cpu": {"hourly_rate_usd": 0.60, "type": "cpu"},
"gpu_a10": {"hourly_rate_usd": 1.10, "type": "gpu", "model": "A10"},
"gpu_h200": {"hourly_rate_usd": 4.50, "type": "gpu", "model": "H200"}
}
model_cost = llm_costs.get(model_name)
if model_cost:
return json.dumps({
"model": model_name,
"cost_data": model_cost,
"hardware_options": hardware_costs,
"currency": "USD"
}, indent=2)
else:
return json.dumps({
"model": model_name,
"error": "Model not found in cost database",
"available_models": list(llm_costs.keys()),
"hardware_options": hardware_costs
}, indent=2)
# ============================================================================
# MCP PROMPTS - Reusable prompt templates for common workflows
# ============================================================================
@gr.mcp.prompt()
def analysis_prompt(
analysis_type: str = "leaderboard",
focus_area: str = "overall",
detail_level: str = "detailed"
) -> str:
"""
Generate a prompt template for analyzing agent evaluation data.
This prompt helps standardize analysis requests across different
evaluation data types and focus areas.
Args:
analysis_type (str): Type of analysis. Options: "leaderboard", "trace", "cost". Default: "leaderboard"
focus_area (str): What to focus on. Options: "overall", "performance", "cost", "efficiency". Default: "overall"
detail_level (str): Level of detail. Options: "summary", "detailed", "comprehensive". Default: "detailed"
Returns:
str: Formatted prompt template for analysis
"""
templates = {
"leaderboard": {
"overall": "Analyze the agent evaluation leaderboard data comprehensively. Identify top performers across all metrics (accuracy, cost, latency, CO2), explain trade-offs between different approaches, and provide actionable recommendations for model selection.",
"performance": "Focus on performance metrics in the leaderboard. Compare success rates and accuracy across different models and agent types. Identify which configurations achieve the highest success rates and explain why.",
"cost": "Analyze cost efficiency in the leaderboard. Compare costs across different models and identify the best cost-performance ratios. Recommend the most cost-effective configurations for different use cases.",
"efficiency": "Evaluate efficiency metrics including latency, GPU utilization, and CO2 emissions. Identify the most efficient models and explain how to optimize for speed while maintaining quality."
},
"trace": {
"overall": "Analyze this agent execution trace comprehensively. Explain the sequence of operations, identify any bottlenecks or inefficiencies, and suggest optimizations.",
"performance": "Focus on performance aspects of this trace. Identify which steps took the most time, explain why, and suggest ways to improve execution speed.",
"cost": "Analyze the cost implications of this trace execution. Break down token usage and API calls, calculate costs, and suggest ways to reduce expenses.",
"efficiency": "Evaluate the efficiency of this trace. Identify redundant operations, suggest ways to optimize the execution flow, and recommend best practices."
},
"cost": {
"overall": "Analyze the cost estimation comprehensively. Break down LLM API costs, infrastructure costs, and provide optimization recommendations.",
"performance": "Focus on the cost-performance trade-off. Compare different hardware options and explain which provides the best value.",
"cost": "Deep dive into cost breakdown. Explain each cost component in detail and provide specific recommendations for cost reduction.",
"efficiency": "Analyze cost efficiency. Compare different model configurations and recommend the most cost-effective approach for the given use case."
}
}
detail_prefixes = {
"summary": "Provide a brief, high-level summary. ",
"detailed": "Provide a detailed analysis with specific insights. ",
"comprehensive": "Provide a comprehensive, in-depth analysis with detailed recommendations. "
}
prefix = detail_prefixes.get(detail_level, detail_prefixes["detailed"])
template = templates.get(analysis_type, {}).get(focus_area, templates["leaderboard"]["overall"])
return f"{prefix}{template}"
@gr.mcp.prompt()
def debug_prompt(
debug_type: str = "error",
context: str = "agent_execution"
) -> str:
"""
Generate a prompt template for debugging agent traces.
This prompt helps standardize debugging requests for different
types of issues and contexts.
Args:
debug_type (str): Type of debugging. Options: "error", "performance", "behavior", "optimization". Default: "error"
context (str): Execution context. Options: "agent_execution", "tool_calling", "llm_reasoning". Default: "agent_execution"
Returns:
str: Formatted prompt template for debugging
"""
templates = {
"error": {
"agent_execution": "Debug this agent execution trace to identify why it failed. Analyze each step in the execution flow, identify where the error occurred, explain the root cause, and suggest how to fix it.",
"tool_calling": "Debug this tool calling sequence. Identify which tool call failed or produced unexpected results, explain why it happened, and suggest corrections.",
"llm_reasoning": "Debug the LLM reasoning in this trace. Analyze the prompts and responses, identify where the reasoning went wrong, and suggest improvements to the prompts or approach."
},
"performance": {
"agent_execution": "Analyze this trace for performance issues. Identify bottlenecks, measure time spent in each component, and recommend optimizations to improve execution speed.",
"tool_calling": "Analyze tool calling performance. Identify which tools are slow, explain why, and suggest ways to optimize tool execution or caching.",
"llm_reasoning": "Analyze LLM reasoning efficiency. Identify unnecessary calls, redundant reasoning steps, and suggest ways to streamline the reasoning process."
},
"behavior": {
"agent_execution": "Analyze the agent's behavior in this trace. Explain why the agent made certain decisions, whether the behavior is expected, and suggest improvements if needed.",
"tool_calling": "Analyze tool selection behavior. Explain why certain tools were called, whether the choices were optimal, and suggest alternative approaches if applicable.",
"llm_reasoning": "Analyze the LLM's reasoning patterns. Explain the logic flow, identify any unexpected reasoning, and suggest how to guide the model toward better decisions."
},
"optimization": {
"agent_execution": "Analyze this trace for optimization opportunities. Identify redundant operations, suggest caching strategies, and recommend ways to reduce costs and improve efficiency.",
"tool_calling": "Optimize tool usage in this trace. Suggest ways to reduce tool calls, batch operations, or use more efficient alternatives.",
"llm_reasoning": "Optimize LLM usage. Suggest ways to reduce token usage, improve prompt efficiency, and achieve the same results with lower costs."
}
}
template = templates.get(debug_type, {}).get(context, templates["error"]["agent_execution"])
return template
@gr.mcp.prompt()
def optimization_prompt(
optimization_goal: str = "cost",
constraints: str = "maintain_quality"
) -> str:
"""
Generate a prompt template for optimization recommendations.
This prompt helps standardize optimization requests for different
goals and constraints.
Args:
optimization_goal (str): What to optimize. Options: "cost", "speed", "quality", "efficiency". Default: "cost"
constraints (str): Constraints to consider. Options: "maintain_quality", "maintain_speed", "no_constraints". Default: "maintain_quality"
Returns:
str: Formatted prompt template for optimization
"""
templates = {
"cost": {
"maintain_quality": "Analyze this evaluation setup and recommend cost optimizations while maintaining quality. Consider cheaper models, optimized prompts, caching strategies, and hardware selection. Quantify potential savings.",
"maintain_speed": "Recommend cost optimizations while maintaining execution speed. Consider model alternatives, batch processing, and infrastructure choices that reduce costs without adding latency.",
"no_constraints": "Recommend aggressive cost optimizations. Identify all opportunities to reduce expenses, even if it means trade-offs in quality or speed. Prioritize maximum cost reduction."
},
"speed": {
"maintain_quality": "Recommend speed optimizations while maintaining quality. Consider parallel execution, caching, faster models with similar accuracy, and infrastructure upgrades. Quantify potential speedups.",
"maintain_cost": "Recommend speed optimizations within the current cost budget. Suggest configuration changes, caching strategies, and optimizations that don't increase expenses.",
"no_constraints": "Recommend aggressive speed optimizations. Identify all opportunities to reduce latency, even if it increases costs. Prioritize maximum performance."
},
"quality": {
"maintain_cost": "Recommend quality improvements within the current cost budget. Suggest better prompts, model configurations, and strategies that improve accuracy without increasing expenses.",
"maintain_speed": "Recommend quality improvements while maintaining execution speed. Suggest prompt improvements, reasoning enhancements, and configurations that improve accuracy without adding latency.",
"no_constraints": "Recommend quality improvements without budget constraints. Suggest the best models, optimal configurations, and strategies to maximize accuracy and success rates."
},
"efficiency": {
"maintain_quality": "Recommend overall efficiency improvements. Optimize for the best cost-speed-quality balance. Identify waste, suggest streamlined processes, and provide holistic optimization strategies.",
"maintain_cost": "Recommend efficiency improvements within budget. Focus on reducing waste, optimizing resource usage, and getting better results with the same cost.",
"maintain_speed": "Recommend efficiency improvements maintaining speed. Reduce unnecessary operations, optimize resource usage, and improve output quality without adding latency."
}
}
# Handle constraint variations
if constraints == "maintain_quality" and optimization_goal == "speed":
constraints = "maintain_quality" # Use existing template
elif constraints == "maintain_speed" and optimization_goal == "cost":
constraints = "maintain_speed" # Use existing template
template = templates.get(optimization_goal, {}).get(constraints, templates["cost"]["maintain_quality"])
return template
|