TraceMind-mcp-server / ARCHITECTURE.md
kshitijthakkar's picture
docs: Deploy final documentation package
6982f0b
|
raw
history blame
28.6 kB

TraceMind MCP Server - Technical Architecture

This document provides a deep technical dive into the TraceMind MCP Server architecture, implementation details, and deployment configuration.

Table of Contents


System Overview

TraceMind MCP Server is a Gradio-based MCP (Model Context Protocol) server that provides AI-powered analysis tools for agent evaluation data. It serves as the backend intelligence layer for the TraceMind ecosystem.

Technology Stack

Component Technology Version Purpose
Framework Gradio 6.x Native MCP support with @gr.mcp.* decorators
AI Model Google Gemini 2.5 Flash Lite AI-powered analysis and insights
Data Source HuggingFace Datasets Latest Load evaluation datasets
Protocol MCP 1.0 Model Context Protocol for tool exposure
Transport SSE - Server-Sent Events for real-time communication
Deployment Docker - HuggingFace Spaces containerized deployment
Language Python 3.10+ Core implementation

Architecture Diagram

β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ MCP Clients (External)                                        β”‚
β”‚  - Claude Desktop                                             β”‚
β”‚  - VS Code (Continue, Cursor, Cline)                         β”‚
β”‚  - TraceMind-AI (Track 2)                                    β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                 β”‚
                 β”‚ MCP Protocol
                 β”‚ (SSE Transport)
                 ↓
β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
β”‚ TraceMind MCP Server (HuggingFace Spaces)                    β”‚
β”‚                                                               β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚ Gradio App (app.py)                                   β”‚   β”‚
β”‚  β”‚  - MCP Server Endpoint (mcp_server=True)             β”‚   β”‚
β”‚  β”‚  - Testing UI (Gradio Blocks)                        β”‚   β”‚
β”‚  β”‚  - Configuration Management                           β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                β”‚                                              β”‚
β”‚                ↓                                              β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚ MCP Tools (mcp_tools.py)                             β”‚   β”‚
β”‚  β”‚  - 11 Tools (@gr.mcp.tool())                         β”‚   β”‚
β”‚  β”‚  - 3 Resources (@gr.mcp.resource())                  β”‚   β”‚
β”‚  β”‚  - 3 Prompts (@gr.mcp.prompt())                      β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                β”‚                                              β”‚
β”‚                ↓                                              β”‚
β”‚  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”   β”‚
β”‚  β”‚ Gemini Client (gemini_client.py)                     β”‚   β”‚
β”‚  β”‚  - API Authentication                                 β”‚   β”‚
β”‚  β”‚  - Prompt Engineering                                 β”‚   β”‚
β”‚  β”‚  - Response Parsing                                   β”‚   β”‚
β”‚  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜   β”‚
β”‚                β”‚                                              β”‚
β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜
                 β”‚
                 ↓
        β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”
        β”‚ External APIs  β”‚
        β”‚  - Gemini API  β”‚
        β”‚  - HF Datasets β”‚
        β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜

Project Structure

TraceMind-mcp-server/
β”œβ”€β”€ app.py                      # Main entry point, Gradio UI
β”œβ”€β”€ mcp_tools.py                # MCP tool implementations (11 tools + 3 resources + 3 prompts)
β”œβ”€β”€ gemini_client.py            # Google Gemini API client
β”œβ”€β”€ requirements.txt            # Python dependencies
β”œβ”€β”€ Dockerfile                  # Container configuration
β”œβ”€β”€ .env.example                # Environment variable template
β”œβ”€β”€ .gitignore                  # Git ignore rules
β”œβ”€β”€ README.md                   # Project documentation
└── DOCUMENTATION.md            # Complete API reference

Total: 8 files (excluding docs)
Lines of Code: ~3,500 lines (breakdown below)

File Sizes

File Lines Purpose
app.py ~1,200 Gradio UI + MCP server setup + testing interface
mcp_tools.py ~2,100 All 17 MCP components (tools, resources, prompts)
gemini_client.py ~200 Gemini API integration
requirements.txt ~20 Dependencies
Dockerfile ~30 Deployment configuration

Core Components

1. app.py - Main Application

Purpose: Entry point for HuggingFace Spaces deployment, provides both MCP server and testing UI.

Key Responsibilities:

  • Initialize Gradio app with mcp_server=True
  • Create testing interface for all MCP tools
  • Handle configuration (API keys, settings)
  • Manage client connections

Architecture:

# app.py structure
import gradio as gr
from gemini_client import GeminiClient
from mcp_tools import *  # All tool implementations

# 1. Initialize Gemini client (with fallback)
default_gemini_client = GeminiClient()

# 2. Create Gradio UI for testing
def create_gradio_ui():
    with gr.Blocks() as demo:
        # Settings tab for API key configuration
        # Tab for each MCP tool (11 tabs)
        # Tab for testing resources
        # Tab for testing prompts
        # API documentation tab
    return demo

# 3. Launch with MCP server enabled
if __name__ == "__main__":
    demo = create_gradio_ui()
    demo.launch(
        mcp_server=True,  # ← Enables MCP endpoint
        share=False,
        server_name="0.0.0.0",
        server_port=7860
    )

MCP Enablement:

  • mcp_server=True in demo.launch() automatically:
    • Exposes /gradio_api/mcp/sse endpoint
    • Discovers all @gr.mcp.tool(), @gr.mcp.resource(), @gr.mcp.prompt() decorated functions
    • Generates MCP tool schemas from function signatures and docstrings
    • Handles MCP protocol communication (SSE transport)

Testing Interface:

  • Settings Tab: Configure Gemini API key and HF token
  • Tool Tabs (11): One tab per tool for manual testing
    • Input fields for all parameters
    • Submit button
    • Output display (Markdown or JSON)
  • Resources Tab: Test resource URIs
  • Prompts Tab: Test prompt templates
  • API Documentation Tab: Generated from tool docstrings

2. mcp_tools.py - MCP Components

Purpose: Implements all 17 MCP components (11 tools + 3 resources + 3 prompts).

Structure:

# mcp_tools.py structure
import gradio as gr
from gemini_client import GeminiClient
from datasets import load_dataset

# ============ TOOLS (11) ============

@gr.mcp.tool()
async def analyze_leaderboard(...) -> str:
    """Tool docstring (becomes MCP description)"""
    # 1. Load data from HuggingFace
    # 2. Process/filter data
    # 3. Call Gemini for AI analysis
    # 4. Return formatted response
    pass

@gr.mcp.tool()
async def debug_trace(...) -> str:
    """Debug traces with AI assistance"""
    pass

# ... (9 more tools)

# ============ RESOURCES (3) ============

@gr.mcp.resource()
def get_leaderboard_data(uri: str) -> str:
    """URI: leaderboard://{repo}"""
    # Parse URI
    # Load dataset
    # Return raw JSON
    pass

@gr.mcp.resource()
def get_trace_data(uri: str) -> str:
    """URI: trace://{trace_id}/{repo}"""
    pass

@gr.mcp.resource()
def get_cost_data(uri: str) -> str:
    """URI: cost://model/{model_name}"""
    pass

# ============ PROMPTS (3) ============

@gr.mcp.prompt()
def analysis_prompt(analysis_type: str, ...) -> str:
    """Generate analysis prompt templates"""
    pass

@gr.mcp.prompt()
def debug_prompt(debug_type: str, ...) -> str:
    """Generate debug prompt templates"""
    pass

@gr.mcp.prompt()
def optimization_prompt(optimization_goal: str, ...) -> str:
    """Generate optimization prompt templates"""
    pass

Design Patterns:

  1. Decorator-Based Registration:

    @gr.mcp.tool()  # Gradio automatically registers as MCP tool
    async def tool_name(...) -> str:
        """Docstring becomes tool description in MCP schema"""
        pass
    
  2. Structured Docstrings:

    """
    Brief one-line description.
    
    Longer detailed description explaining purpose and behavior.
    
    Args:
        param1 (type): Description of param1
        param2 (type): Description of param2. Default: value
    
    Returns:
        type: Description of return value
    """
    

    Gradio parses this to generate MCP tool schema automatically.

  3. Error Handling:

    try:
        # Tool implementation
        return result
    except Exception as e:
        return f"❌ **Error**: {str(e)}"
    

    All errors returned as user-friendly strings.

  4. Async/Await: All tools are async for efficient I/O operations (API calls, dataset loading).


3. gemini_client.py - AI Integration

Purpose: Handles all interactions with Google Gemini 2.5 Flash Lite API.

Key Features:

  • API authentication
  • Prompt engineering for different analysis types
  • Response parsing and formatting
  • Error handling and retries
  • Token optimization

Class Structure:

class GeminiClient:
    def __init__(self, api_key: str, model_name: str):
        """Initialize with API key and model"""
        self.api_key = api_key
        self.model = genai.GenerativeModel(model_name)
        self.generation_config = {
            "temperature": 0.7,
            "top_p": 0.95,
            "max_output_tokens": 4096,  # Optimized for HF Spaces
        }
        self.request_timeout = 30  # 30s timeout

    async def analyze_with_context(
        self,
        data: Dict,
        analysis_type: str,
        specific_question: Optional[str] = None
    ) -> str:
        """
        Core analysis method used by all AI-powered tools

        Args:
            data: Data to analyze (dict or JSON)
            analysis_type: "leaderboard", "trace", "cost_estimate", "comparison", "results"
            specific_question: Optional specific question

        Returns:
            Markdown-formatted analysis
        """
        # 1. Build system prompt based on analysis_type
        system_prompt = self._get_system_prompt(analysis_type)

        # 2. Format data for context
        data_str = json.dumps(data, indent=2)

        # 3. Build user prompt
        user_prompt = f"{system_prompt}\n\nData:\n{data_str}"
        if specific_question:
            user_prompt += f"\n\nSpecific Question: {specific_question}"

        # 4. Call Gemini API
        response = await self.model.generate_content_async(
            user_prompt,
            generation_config=self.generation_config,
            request_options={"timeout": self.request_timeout}
        )

        # 5. Extract and return text
        return response.text

    def _get_system_prompt(self, analysis_type: str) -> str:
        """Get specialized system prompt for each analysis type"""
        prompts = {
            "leaderboard": """You are an expert AI agent performance analyst.
                Analyze evaluation leaderboard data and provide:
                - Top performers by key metrics
                - Trade-off analysis (cost vs accuracy)
                - Trend identification
                - Actionable recommendations
                Format: Markdown with clear sections.""",

            "trace": """You are an expert at debugging AI agent executions.
                Analyze OpenTelemetry trace data and:
                - Answer specific questions about execution
                - Identify performance bottlenecks
                - Explain reasoning chain
                - Provide optimization suggestions
                Format: Clear, concise explanation.""",

            "cost_estimate": """You are a cost optimization expert.
                Analyze cost estimation data and provide:
                - Detailed cost breakdown
                - Hardware recommendations
                - Cost optimization opportunities
                - ROI analysis
                Format: Structured breakdown with recommendations.""",

            # ... more prompts for other analysis types
        }
        return prompts.get(analysis_type, prompts["leaderboard"])

Optimization Strategies:

  • Token Reduction: max_output_tokens: 4096 (reduced from 8192) for faster responses
  • Request Timeout: 30s timeout for HF Spaces compatibility
  • Temperature: 0.7 for balanced creativity and consistency
  • Model Selection: gemini-2.5-flash-lite for speed (can switch to gemini-2.5-flash for quality)

MCP Protocol Implementation

How Gradio's Native MCP Support Works

Gradio 6+ provides native MCP server capabilities through decorators and automatic schema generation.

1. Tool Registration:

@gr.mcp.tool()  # ← This decorator tells Gradio to expose this as an MCP tool
async def my_tool(param1: str, param2: int = 10) -> str:
    """
    Brief description (used in MCP tool schema).

    Args:
        param1 (str): Description of param1
        param2 (int): Description of param2. Default: 10

    Returns:
        str: Description of return value
    """
    return f"Result: {param1}, {param2}"

What Gradio does automatically:

  • Parses function signature to extract parameter names and types
  • Parses docstring to extract descriptions
  • Generates MCP tool schema:
    {
      "name": "my_tool",
      "description": "Brief description (used in MCP tool schema).",
      "inputSchema": {
        "type": "object",
        "properties": {
          "param1": {
            "type": "string",
            "description": "Description of param1"
          },
          "param2": {
            "type": "integer",
            "default": 10,
            "description": "Description of param2. Default: 10"
          }
        },
        "required": ["param1"]
      }
    }
    

2. Resource Registration:

@gr.mcp.resource()
def get_resource(uri: str) -> str:
    """
    Resource description.

    Args:
        uri (str): Resource URI (e.g., "leaderboard://repo/name")

    Returns:
        str: JSON data
    """
    # Parse URI
    # Load data
    # Return JSON string
    pass

3. Prompt Registration:

@gr.mcp.prompt()
def generate_prompt(prompt_type: str, context: str) -> str:
    """
    Generate reusable prompt templates.

    Args:
        prompt_type (str): Type of prompt
        context (str): Context for prompt generation

    Returns:
        str: Generated prompt text
    """
    return f"Prompt template for {prompt_type} with {context}"

MCP Endpoint URLs

When demo.launch(mcp_server=True) is called:

SSE Endpoint (Primary):

https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse

Streamable HTTP Endpoint (Alternative):

https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/

Client Configuration

Claude Desktop (claude_desktop_config.json):

{
  "mcpServers": {
    "tracemind": {
      "url": "https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse",
      "transport": "sse"
    }
  }
}

Python MCP Client:

from mcp import ClientSession, ServerParameters

session = ClientSession(
    ServerParameters(
        url="https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/sse",
        transport="sse"
    )
)
await session.__aenter__()

# List tools
tools = await session.list_tools()

# Call tool
result = await session.call_tool("analyze_leaderboard", arguments={
    "metric_focus": "cost",
    "top_n": 5
})

Gemini Integration

API Configuration

Environment Variable:

GEMINI_API_KEY=your_api_key_here

Initialization:

import google.generativeai as genai

genai.configure(api_key=os.getenv("GEMINI_API_KEY"))
model = genai.GenerativeModel("gemini-2.5-flash-lite")

Prompt Engineering Strategy

1. System Prompts by Analysis Type: Each analysis type (leaderboard, trace, cost, comparison, results) has a specialized system prompt that:

  • Defines the AI's role and expertise
  • Specifies output format (markdown, structured sections)
  • Lists key insights to include
  • Sets tone (professional, concise, actionable)

2. Context Injection:

user_prompt = f"""
{system_prompt}

Data to Analyze:
{json.dumps(data, indent=2)}

Specific Question: {question}
"""

3. Output Formatting:

  • All responses in Markdown
  • Clear sections: Top Performers, Key Insights, Trade-offs, Recommendations
  • Bullet points for readability
  • Code blocks for technical details

Rate Limiting & Error Handling

Rate Limits (Gemini 2.5 Flash Lite free tier):

  • 1,500 requests per day
  • 1 request per second

Error Handling Strategy:

try:
    response = await model.generate_content_async(...)
    return response.text
except google.api_core.exceptions.ResourceExhausted:
    return "❌ **Rate limit exceeded**. Please try again in a few seconds."
except google.api_core.exceptions.DeadlineExceeded:
    return "❌ **Request timeout**. The analysis is taking too long. Try with less data."
except Exception as e:
    return f"❌ **Error**: {str(e)}"

Data Flow

Tool Execution Flow

1. MCP Client                    (e.g., Claude Desktop, TraceMind-AI)
   └─→ Calls: analyze_leaderboard(metric_focus="cost", top_n=5)

2. Gradio MCP Server             (app.py)
   └─→ Routes to: analyze_leaderboard() in mcp_tools.py

3. MCP Tool Function             (mcp_tools.py)
   β”œβ”€β†’ Load data from HuggingFace Datasets
   β”‚   └─→ ds = load_dataset("kshitijthakkar/smoltrace-leaderboard")
   β”‚
   β”œβ”€β†’ Process/filter data
   β”‚   └─→ Filter by time range, sort by metric
   β”‚
   β”œβ”€β†’ Call Gemini Client
   β”‚   └─→ gemini_client.analyze_with_context(data, "leaderboard")
   β”‚
   └─→ Return formatted response

4. Gemini Client                 (gemini_client.py)
   β”œβ”€β†’ Build system prompt
   β”œβ”€β†’ Format data as JSON
   β”œβ”€β†’ Call Gemini API
   β”‚   └─→ model.generate_content_async(prompt)
   └─→ Return AI-generated analysis

5. Response Path                 (back through stack)
   └─→ Gemini β†’ gemini_client β†’ mcp_tool β†’ Gradio β†’ MCP Client

6. MCP Client                    (displays result to user)
   └─→ Shows markdown-formatted analysis

Resource Access Flow

1. MCP Client
   └─→ Accesses: leaderboard://kshitijthakkar/smoltrace-leaderboard

2. Gradio MCP Server
   └─→ Routes to: get_leaderboard_data(uri)

3. Resource Function
   β”œβ”€β†’ Parse URI to extract repo name
   β”œβ”€β†’ Load dataset from HuggingFace
   β”œβ”€β†’ Convert to JSON
   └─→ Return raw JSON string

4. MCP Client
   └─→ Receives raw JSON data (no AI processing)

Deployment Architecture

HuggingFace Spaces Deployment

Platform: HuggingFace Spaces SDK: Docker (for custom dependencies) Hardware: CPU Basic (free tier) - sufficient for API calls and dataset loading URL: https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server

Dockerfile

# Base image
FROM python:3.10-slim

# Set working directory
WORKDIR /app

# Copy requirements
COPY requirements.txt .

# Install dependencies
RUN pip install --no-cache-dir -r requirements.txt

# Copy application files
COPY app.py .
COPY mcp_tools.py .
COPY gemini_client.py .

# Expose port
EXPOSE 7860

# Set environment variables
ENV GRADIO_SERVER_NAME="0.0.0.0"
ENV GRADIO_SERVER_PORT="7860"

# Run application
CMD ["python", "app.py"]

Environment Variables (HF Spaces Secrets)

# Required
GEMINI_API_KEY=your_gemini_api_key_here

# Optional (for testing)
HF_TOKEN=your_huggingface_token_here

Scaling Considerations

Current Setup (Free Tier):

  • Hardware: CPU Basic
  • Concurrent Users: ~10-20
  • Request Latency: 2-5 seconds (AI analysis)
  • Rate Limit: Gemini API (1,500 req/day)

If Scaling Needed:

  1. Upgrade Hardware: CPU Basic β†’ CPU Upgrade (2x performance)
  2. Caching: Add Redis for caching frequent queries
  3. API Key Pool: Rotate multiple Gemini API keys to bypass rate limits
  4. Load Balancing: Deploy multiple Spaces instances with load balancer

Development Workflow

Local Development Setup

# 1. Clone repository
git clone https://github.com/Mandark-droid/TraceMind-mcp-server.git
cd TraceMind-mcp-server

# 2. Create virtual environment
python -m venv venv
source venv/bin/activate  # Windows: venv\Scripts\activate

# 3. Install dependencies
pip install -r requirements.txt

# 4. Configure environment
cp .env.example .env
# Edit .env with your API keys

# 5. Run locally
python app.py

# 6. Access
# - Gradio UI: http://localhost:7860
# - MCP Endpoint: http://localhost:7860/gradio_api/mcp/sse

Testing MCP Tools

Option 1: Gradio UI (Easiest):

1. Run app.py
2. Open http://localhost:7860
3. Navigate to tool tab (e.g., "πŸ“Š Analyze Leaderboard")
4. Fill in parameters
5. Click submit button
6. View results

Option 2: Python MCP Client:

from mcp import ClientSession, ServerParameters

async def test_tool():
    session = ClientSession(
        ServerParameters(
            url="http://localhost:7860/gradio_api/mcp/sse",
            transport="sse"
        )
    )
    await session.__aenter__()

    result = await session.call_tool("analyze_leaderboard", {
        "metric_focus": "cost",
        "top_n": 3
    })

    print(result.content[0].text)

import asyncio
asyncio.run(test_tool())

Adding New MCP Tools

Step 1: Add function to mcp_tools.py:

@gr.mcp.tool()
async def new_tool_name(
    param1: str,
    param2: int = 10
) -> str:
    """
    Brief description of what this tool does.

    Detailed explanation of the tool's purpose and behavior.

    Args:
        param1 (str): Description of param1 with examples
        param2 (int): Description of param2. Default: 10

    Returns:
        str: Description of what the function returns
    """
    try:
        # Implementation
        result = f"Processed: {param1} with {param2}"
        return result
    except Exception as e:
        return f"❌ **Error**: {str(e)}"

Step 2: Add testing UI to app.py (optional):

with gr.Tab("πŸ†• New Tool"):
    gr.Markdown("## New Tool Name")
    param1_input = gr.Textbox(label="Param 1")
    param2_input = gr.Number(label="Param 2", value=10)
    submit_btn = gr.Button("Execute")
    output = gr.Markdown()

    submit_btn.click(
        fn=new_tool_name,
        inputs=[param1_input, param2_input],
        outputs=output
    )

Step 3: Test:

python app.py
# Visit http://localhost:7860
# Test in new tab

Step 4: Deploy:

git add mcp_tools.py app.py
git commit -m "feat: Add new_tool_name MCP tool"
git push origin main
# HF Spaces auto-deploys

Performance Considerations

1. Token Optimization

Problem: Loading full datasets consumes excessive tokens in AI analysis.

Solutions:

  • get_top_performers: Returns only top N models (90% token reduction)
  • get_leaderboard_summary: Returns aggregated stats (99% token reduction)
  • Data sampling: Limit rows when loading datasets (max_rows parameter)

Example:

# ❌ BAD: Loads 51 rows, ~50K tokens
full_data = load_dataset("kshitijthakkar/smoltrace-leaderboard")

# βœ… GOOD: Returns top 5, ~5K tokens (90% reduction)
top_5 = await get_top_performers(top_n=5)

# βœ… BETTER: Returns summary, ~500 tokens (99% reduction)
summary = await get_leaderboard_summary()

2. Async Operations

All tools are async for efficient I/O:

@gr.mcp.tool()
async def tool_name(...):  # ← async
    ds = load_dataset(...)  # ← Blocks on I/O
    result = await gemini_client.analyze(...)  # ← async API call
    return result

Benefits:

  • Non-blocking API calls
  • Multiple concurrent requests
  • Better resource utilization

3. Caching (Future Enhancement)

Current: No caching (stateless) Future: Add Redis for caching frequent queries

import redis
from functools import wraps

redis_client = redis.Redis(...)

def cache_result(ttl=300):
    def decorator(func):
        @wraps(func)
        async def wrapper(*args, **kwargs):
            # Generate cache key
            cache_key = f"{func.__name__}:{hash((args, tuple(kwargs.items())))}"

            # Check cache
            cached = redis_client.get(cache_key)
            if cached:
                return cached.decode()

            # Execute function
            result = await func(*args, **kwargs)

            # Store in cache
            redis_client.setex(cache_key, ttl, result)

            return result
        return wrapper
    return decorator

@gr.mcp.tool()
@cache_result(ttl=300)  # 5-minute cache
async def analyze_leaderboard(...):
    pass

Security

API Key Management

Storage:

  • Development: .env file (gitignored)
  • Production: HuggingFace Spaces Secrets (encrypted)

Access:

# gemini_client.py
api_key = os.getenv("GEMINI_API_KEY")
if not api_key:
    raise ValueError("GEMINI_API_KEY not set")

Never:

  • ❌ Hardcode API keys in source code
  • ❌ Commit .env to git
  • ❌ Expose keys in client-side JavaScript
  • ❌ Log API keys in console/files

Input Validation

Dataset Repository Validation:

# Only allow "smoltrace-" prefix datasets
if "smoltrace-" not in dataset_repo:
    return "❌ Error: Dataset must contain 'smoltrace-' prefix for security"

Parameter Validation:

# Constrain ranges
top_n = max(1, min(20, top_n))  # Clamp between 1-20
max_rows = max(10, min(500, max_rows))  # Clamp between 10-500

Rate Limiting

Gemini API:

  • Free tier: 1,500 requests/day
  • Handled by Google (automatic)
  • Errors returned as user-friendly messages

HuggingFace Datasets:

  • No rate limits for public datasets
  • Private datasets require HF token

Related Documentation


Last Updated: November 21, 2025 Version: 1.0.0 Track: Building MCP (Enterprise)