Add synthetic dataset generation tools for custom SMOLTRACE evaluations
Browse filesEnable users to create domain-specific test datasets when standard benchmarks don't fit their use case. Enterprise users can now generate custom evaluation datasets for proprietary tools, industry-specific workflows, and specialized agent capabilities.
Key features:
- generate_synthetic_dataset: AI-powered generation of SMOLTRACE-format tasks (5-100 tasks)
- Parallel batched generation: Automatically splits large requests into concurrent batches
- Extended timeout: 120s per batch to support 100-task generations
- push_dataset_to_hub: Direct upload to HuggingFace with naming validation
- Complete API documentation for both new tools
Technical improvements:
- Parallel execution with asyncio.gather for 5x speedup on large datasets
- Fair distribution of difficulty/agent_type across batches
- Partial success handling: continues if some batches fail
- Switch to gemini-2.5-flash-lite for cost efficiency
- README.md +8 -7
- app.py +364 -28
- gemini_client.py +2 -2
- mcp_tools.py +497 -5
|
@@ -5,7 +5,7 @@ colorFrom: blue
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 7860
|
| 8 |
-
pinned:
|
| 9 |
license: agpl-3.0
|
| 10 |
short_description: MCP server for agent evaluation with Gemini 2.5 Pro
|
| 11 |
tags:
|
|
@@ -32,13 +32,14 @@ tags:
|
|
| 32 |
|
| 33 |
TraceMind MCP Server is a Gradio-based MCP (Model Context Protocol) server that provides a complete MCP implementation with:
|
| 34 |
|
| 35 |
-
### π οΈ **
|
| 36 |
1. **π analyze_leaderboard**: Generate insights from evaluation leaderboard data
|
| 37 |
2. **π debug_trace**: Debug specific agent execution traces using OpenTelemetry data
|
| 38 |
3. **π° estimate_cost**: Predict evaluation costs before running
|
| 39 |
4. **βοΈ compare_runs**: Compare two evaluation runs with AI-powered analysis
|
| 40 |
-
5.
|
| 41 |
-
6.
|
|
|
|
| 42 |
|
| 43 |
### π¦ **3 Data Resources**
|
| 44 |
1. **leaderboard data**: Direct JSON access to evaluation results
|
|
@@ -93,11 +94,11 @@ All analysis is powered by **Google Gemini 2.5 Pro** for intelligent, context-aw
|
|
| 93 |
- β
**MCP Standard Compliant**: Built with Gradio's native MCP support (`@gr.mcp.*` decorators)
|
| 94 |
- β
**Production-Ready**: Deployable to HuggingFace Spaces with SSE transport
|
| 95 |
- β
**Testing Interface**: Beautiful Gradio UI for testing all components
|
| 96 |
-
- β
**Enterprise Focus**: Cost optimization, debugging, and
|
| 97 |
- β
**Google Gemini Powered**: Leverages Gemini 2.5 Pro for intelligent analysis
|
| 98 |
-
- β
**
|
| 99 |
|
| 100 |
-
### π οΈ
|
| 101 |
|
| 102 |
#### 1. analyze_leaderboard
|
| 103 |
|
|
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: docker
|
| 7 |
app_port: 7860
|
| 8 |
+
pinned: true
|
| 9 |
license: agpl-3.0
|
| 10 |
short_description: MCP server for agent evaluation with Gemini 2.5 Pro
|
| 11 |
tags:
|
|
|
|
| 32 |
|
| 33 |
TraceMind MCP Server is a Gradio-based MCP (Model Context Protocol) server that provides a complete MCP implementation with:
|
| 34 |
|
| 35 |
+
### π οΈ **7 AI-Powered Tools**
|
| 36 |
1. **π analyze_leaderboard**: Generate insights from evaluation leaderboard data
|
| 37 |
2. **π debug_trace**: Debug specific agent execution traces using OpenTelemetry data
|
| 38 |
3. **π° estimate_cost**: Predict evaluation costs before running
|
| 39 |
4. **βοΈ compare_runs**: Compare two evaluation runs with AI-powered analysis
|
| 40 |
+
5. **π¦ get_dataset**: Load SMOLTRACE datasets (smoltrace-* prefix only) as JSON for flexible analysis
|
| 41 |
+
6. **π§ͺ generate_synthetic_dataset**: Create domain-specific test datasets for SMOLTRACE evaluations (supports up to 100 tasks with parallel batched generation)
|
| 42 |
+
7. **π€ push_dataset_to_hub**: Upload generated datasets to HuggingFace Hub
|
| 43 |
|
| 44 |
### π¦ **3 Data Resources**
|
| 45 |
1. **leaderboard data**: Direct JSON access to evaluation results
|
|
|
|
| 94 |
- β
**MCP Standard Compliant**: Built with Gradio's native MCP support (`@gr.mcp.*` decorators)
|
| 95 |
- β
**Production-Ready**: Deployable to HuggingFace Spaces with SSE transport
|
| 96 |
- β
**Testing Interface**: Beautiful Gradio UI for testing all components
|
| 97 |
+
- β
**Enterprise Focus**: Cost optimization, debugging, decision support, and custom dataset generation
|
| 98 |
- β
**Google Gemini Powered**: Leverages Gemini 2.5 Pro for intelligent analysis
|
| 99 |
+
- β
**13 Total Components**: 7 Tools + 3 Resources + 3 Prompts
|
| 100 |
|
| 101 |
+
### π οΈ Seven Production-Ready Tools
|
| 102 |
|
| 103 |
#### 1. analyze_leaderboard
|
| 104 |
|
|
@@ -1,19 +1,49 @@
|
|
| 1 |
"""
|
| 2 |
-
TraceMind MCP Server -
|
| 3 |
-
|
| 4 |
-
This
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
"""
|
| 11 |
|
| 12 |
import os
|
|
|
|
| 13 |
import gradio as gr
|
| 14 |
from typing import Optional, Dict, Any
|
| 15 |
from datetime import datetime
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
# Local imports
|
| 18 |
from gemini_client import GeminiClient
|
| 19 |
from mcp_tools import (
|
|
@@ -21,8 +51,9 @@ from mcp_tools import (
|
|
| 21 |
debug_trace,
|
| 22 |
estimate_cost,
|
| 23 |
compare_runs,
|
| 24 |
-
|
| 25 |
-
|
|
|
|
| 26 |
)
|
| 27 |
|
| 28 |
# Initialize default Gemini client (fallback if user doesn't provide key)
|
|
@@ -42,15 +73,16 @@ def create_gradio_ui():
|
|
| 42 |
|
| 43 |
**AI-Powered Analysis for Agent Evaluation Data**
|
| 44 |
|
| 45 |
-
This server provides **
|
| 46 |
|
| 47 |
### MCP Tools (AI-Powered)
|
| 48 |
- π **Analyze Leaderboard**: Get insights from evaluation results
|
| 49 |
- π **Debug Trace**: Understand what happened in a specific test
|
| 50 |
- π° **Estimate Cost**: Predict evaluation costs before running
|
| 51 |
- βοΈ **Compare Runs**: Compare two evaluation runs with AI-powered analysis
|
| 52 |
-
- π **Analyze Results**: Deep dive into test results with optimization recommendations
|
| 53 |
- π¦ **Get Dataset**: Load any HuggingFace dataset as JSON for flexible analysis
|
|
|
|
|
|
|
| 54 |
|
| 55 |
### MCP Resources (Data Access)
|
| 56 |
- π **leaderboard://{repo}**: Raw leaderboard data
|
|
@@ -493,12 +525,181 @@ def create_gradio_ui():
|
|
| 493 |
outputs=[dataset_output]
|
| 494 |
)
|
| 495 |
|
| 496 |
-
# Tab 6:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
with gr.Tab("π MCP Resources & Prompts"):
|
| 498 |
gr.Markdown("""
|
| 499 |
## MCP Resources & Prompts
|
| 500 |
|
| 501 |
-
Beyond the
|
| 502 |
that MCP clients can use directly.
|
| 503 |
|
| 504 |
### MCP Resources (Read-Only Data Access)
|
|
@@ -751,7 +952,7 @@ def create_gradio_ui():
|
|
| 751 |
outputs=[prompt_output]
|
| 752 |
)
|
| 753 |
|
| 754 |
-
# Tab
|
| 755 |
with gr.Tab("π API Documentation"):
|
| 756 |
gr.Markdown("""
|
| 757 |
## MCP Tool Specifications
|
|
@@ -842,6 +1043,95 @@ def create_gradio_ui():
|
|
| 842 |
|
| 843 |
---
|
| 844 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 845 |
## MCP Integration
|
| 846 |
|
| 847 |
This Gradio app is MCP-enabled. When deployed to HuggingFace Spaces, it can be accessed via MCP clients.
|
|
@@ -854,8 +1144,8 @@ def create_gradio_ui():
|
|
| 854 |
|
| 855 |
### What's Exposed via MCP:
|
| 856 |
|
| 857 |
-
####
|
| 858 |
-
The
|
| 859 |
are automatically exposed as MCP tools and can be called from any MCP client.
|
| 860 |
|
| 861 |
#### 3 MCP Resources (Data Access)
|
|
@@ -891,14 +1181,60 @@ def create_gradio_ui():
|
|
| 891 |
return demo
|
| 892 |
|
| 893 |
if __name__ == "__main__":
|
| 894 |
-
|
| 895 |
-
|
| 896 |
-
|
| 897 |
-
|
| 898 |
-
|
| 899 |
-
|
| 900 |
-
|
| 901 |
-
|
| 902 |
-
|
| 903 |
-
|
| 904 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
TraceMind MCP Server - Hugging Face Space Entry Point (Track 1)
|
| 3 |
+
|
| 4 |
+
This file serves as the entry point for HuggingFace Space deployment.
|
| 5 |
+
Exposes 7 AI-powered MCP tools + 3 Resources + 3 Prompts via Gradio's native MCP support.
|
| 6 |
+
|
| 7 |
+
Architecture:
|
| 8 |
+
User β MCP Client (Claude Desktop, Continue, Cline, etc.)
|
| 9 |
+
β MCP Endpoint (Gradio SSE)
|
| 10 |
+
β TraceMind MCP Server (this file)
|
| 11 |
+
β Tools (mcp_tools.py)
|
| 12 |
+
β Google Gemini 2.5 Pro API
|
| 13 |
+
|
| 14 |
+
For Track 1: Building MCP Servers - Enterprise Category
|
| 15 |
+
https://huggingface.co/MCP-1st-Birthday
|
| 16 |
+
|
| 17 |
+
Tools Provided:
|
| 18 |
+
π analyze_leaderboard - AI-powered leaderboard analysis
|
| 19 |
+
π debug_trace - Debug agent execution traces with AI
|
| 20 |
+
π° estimate_cost - Predict evaluation costs before running
|
| 21 |
+
βοΈ compare_runs - Compare evaluation runs with AI analysis
|
| 22 |
+
π¦ get_dataset - Load SMOLTRACE datasets as JSON
|
| 23 |
+
π§ͺ generate_synthetic_dataset - Create domain-specific test datasets
|
| 24 |
+
π€ push_dataset_to_hub - Upload datasets to HuggingFace Hub
|
| 25 |
+
|
| 26 |
+
Compatible with:
|
| 27 |
+
- Claude Desktop (via Gradio MCP support)
|
| 28 |
+
- Continue.dev (VS Code extension)
|
| 29 |
+
- Cline (VS Code extension)
|
| 30 |
+
- Any MCP client supporting Gradio's MCP protocol
|
| 31 |
"""
|
| 32 |
|
| 33 |
import os
|
| 34 |
+
import logging
|
| 35 |
import gradio as gr
|
| 36 |
from typing import Optional, Dict, Any
|
| 37 |
from datetime import datetime
|
| 38 |
|
| 39 |
+
# Configure logging
|
| 40 |
+
logging.basicConfig(
|
| 41 |
+
level=logging.INFO,
|
| 42 |
+
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
| 43 |
+
handlers=[logging.StreamHandler()]
|
| 44 |
+
)
|
| 45 |
+
logger = logging.getLogger(__name__)
|
| 46 |
+
|
| 47 |
# Local imports
|
| 48 |
from gemini_client import GeminiClient
|
| 49 |
from mcp_tools import (
|
|
|
|
| 51 |
debug_trace,
|
| 52 |
estimate_cost,
|
| 53 |
compare_runs,
|
| 54 |
+
get_dataset,
|
| 55 |
+
generate_synthetic_dataset,
|
| 56 |
+
push_dataset_to_hub
|
| 57 |
)
|
| 58 |
|
| 59 |
# Initialize default Gemini client (fallback if user doesn't provide key)
|
|
|
|
| 73 |
|
| 74 |
**AI-Powered Analysis for Agent Evaluation Data**
|
| 75 |
|
| 76 |
+
This server provides **7 MCP Tools + 3 MCP Resources + 3 MCP Prompts**:
|
| 77 |
|
| 78 |
### MCP Tools (AI-Powered)
|
| 79 |
- π **Analyze Leaderboard**: Get insights from evaluation results
|
| 80 |
- π **Debug Trace**: Understand what happened in a specific test
|
| 81 |
- π° **Estimate Cost**: Predict evaluation costs before running
|
| 82 |
- βοΈ **Compare Runs**: Compare two evaluation runs with AI-powered analysis
|
|
|
|
| 83 |
- π¦ **Get Dataset**: Load any HuggingFace dataset as JSON for flexible analysis
|
| 84 |
+
- π§ͺ **Generate Synthetic Dataset**: Create domain-specific test datasets for SMOLTRACE
|
| 85 |
+
- π€ **Push to Hub**: Upload generated datasets to HuggingFace Hub
|
| 86 |
|
| 87 |
### MCP Resources (Data Access)
|
| 88 |
- π **leaderboard://{repo}**: Raw leaderboard data
|
|
|
|
| 525 |
outputs=[dataset_output]
|
| 526 |
)
|
| 527 |
|
| 528 |
+
# Tab 6: Generate Synthetic Dataset
|
| 529 |
+
with gr.Tab("π§ͺ Generate Synthetic Dataset"):
|
| 530 |
+
gr.Markdown("""
|
| 531 |
+
## Create Domain-Specific Test Datasets for SMOLTRACE
|
| 532 |
+
|
| 533 |
+
Use AI to generate synthetic evaluation tasks tailored to your domain and tools.
|
| 534 |
+
Perfect for creating custom benchmarks when standard datasets don't fit your use case.
|
| 535 |
+
|
| 536 |
+
**π― Enterprise Use Case**: Quickly create evaluation datasets for:
|
| 537 |
+
- Custom tools and APIs your agents use
|
| 538 |
+
- Industry-specific domains (finance, healthcare, legal, etc.)
|
| 539 |
+
- Internal workflows and processes
|
| 540 |
+
- Specialized agent capabilities
|
| 541 |
+
|
| 542 |
+
**Output Format**: SMOLTRACE-compatible task dataset ready for HuggingFace upload
|
| 543 |
+
""")
|
| 544 |
+
|
| 545 |
+
with gr.Row():
|
| 546 |
+
with gr.Column():
|
| 547 |
+
synth_domain = gr.Textbox(
|
| 548 |
+
label="Domain",
|
| 549 |
+
placeholder="e.g., finance, healthcare, travel, ecommerce, customer_support",
|
| 550 |
+
value="travel",
|
| 551 |
+
info="The domain/industry for your synthetic tasks"
|
| 552 |
+
)
|
| 553 |
+
synth_tools = gr.Textbox(
|
| 554 |
+
label="Tool Names (comma-separated)",
|
| 555 |
+
placeholder="e.g., get_weather,search_flights,book_hotel,currency_converter",
|
| 556 |
+
value="get_weather,search_flights,book_hotel",
|
| 557 |
+
info="Names of tools your agent can use",
|
| 558 |
+
lines=2
|
| 559 |
+
)
|
| 560 |
+
synth_num_tasks = gr.Slider(
|
| 561 |
+
label="Number of Tasks",
|
| 562 |
+
minimum=5,
|
| 563 |
+
maximum=100,
|
| 564 |
+
value=10,
|
| 565 |
+
step=1,
|
| 566 |
+
info="Total number of synthetic tasks to generate"
|
| 567 |
+
)
|
| 568 |
+
synth_difficulty = gr.Dropdown(
|
| 569 |
+
label="Difficulty Distribution",
|
| 570 |
+
choices=["balanced", "easy_only", "medium_only", "hard_only", "progressive"],
|
| 571 |
+
value="balanced",
|
| 572 |
+
info="How to distribute task difficulty"
|
| 573 |
+
)
|
| 574 |
+
synth_agent_type = gr.Dropdown(
|
| 575 |
+
label="Agent Type",
|
| 576 |
+
choices=["both", "tool", "code"],
|
| 577 |
+
value="both",
|
| 578 |
+
info="Target agent type for the tasks"
|
| 579 |
+
)
|
| 580 |
+
synth_button = gr.Button("π§ͺ Generate Synthetic Dataset", variant="primary", size="lg")
|
| 581 |
+
|
| 582 |
+
with gr.Column():
|
| 583 |
+
synth_output = gr.JSON(label="Generated Dataset (JSON)")
|
| 584 |
+
|
| 585 |
+
gr.Markdown("""
|
| 586 |
+
### π Next Steps
|
| 587 |
+
|
| 588 |
+
After generation:
|
| 589 |
+
1. **Copy the `tasks` array** from the JSON output above
|
| 590 |
+
2. **Use the "Push to Hub" tab** to upload directly to HuggingFace
|
| 591 |
+
3. **Or upload manually** following the instructions in the output
|
| 592 |
+
|
| 593 |
+
**π‘ Tip**: The generated dataset includes usage instructions and follows SMOLTRACE naming convention!
|
| 594 |
+
""")
|
| 595 |
+
|
| 596 |
+
async def run_generate_synthetic(domain, tools, num_tasks, difficulty, agent_type):
|
| 597 |
+
"""Generate synthetic dataset with async support."""
|
| 598 |
+
try:
|
| 599 |
+
import json
|
| 600 |
+
result = await generate_synthetic_dataset(
|
| 601 |
+
domain=domain,
|
| 602 |
+
tool_names=tools,
|
| 603 |
+
num_tasks=int(num_tasks),
|
| 604 |
+
difficulty_distribution=difficulty,
|
| 605 |
+
agent_type=agent_type
|
| 606 |
+
)
|
| 607 |
+
return json.loads(result)
|
| 608 |
+
except Exception as e:
|
| 609 |
+
return {"error": str(e)}
|
| 610 |
+
|
| 611 |
+
synth_button.click(
|
| 612 |
+
fn=run_generate_synthetic,
|
| 613 |
+
inputs=[synth_domain, synth_tools, synth_num_tasks, synth_difficulty, synth_agent_type],
|
| 614 |
+
outputs=[synth_output]
|
| 615 |
+
)
|
| 616 |
+
|
| 617 |
+
# Tab 7: Push Dataset to Hub
|
| 618 |
+
with gr.Tab("π€ Push to Hub"):
|
| 619 |
+
gr.Markdown("""
|
| 620 |
+
## Upload Generated Dataset to HuggingFace Hub
|
| 621 |
+
|
| 622 |
+
Upload your synthetic dataset (from the previous tab or any SMOLTRACE-format dataset)
|
| 623 |
+
directly to HuggingFace Hub.
|
| 624 |
+
|
| 625 |
+
**Requirements**:
|
| 626 |
+
- HuggingFace account
|
| 627 |
+
- API token with write permissions ([Get one here](https://huggingface.co/settings/tokens))
|
| 628 |
+
- Dataset in SMOLTRACE format
|
| 629 |
+
|
| 630 |
+
**Naming Convention**: `{username}/smoltrace-{domain}-tasks` or `{username}/smoltrace-{domain}-tasks-v1`
|
| 631 |
+
""")
|
| 632 |
+
|
| 633 |
+
with gr.Row():
|
| 634 |
+
with gr.Column():
|
| 635 |
+
push_dataset_json = gr.Textbox(
|
| 636 |
+
label="Dataset JSON (tasks array)",
|
| 637 |
+
placeholder='[{"id": "task_001", "prompt": "...", "expected_tool": "...", ...}]',
|
| 638 |
+
info="Paste the 'tasks' array from generate_synthetic_dataset output",
|
| 639 |
+
lines=10
|
| 640 |
+
)
|
| 641 |
+
push_repo_name = gr.Textbox(
|
| 642 |
+
label="Repository Name",
|
| 643 |
+
placeholder="your-username/smoltrace-finance-tasks",
|
| 644 |
+
info="HuggingFace repo name (follow SMOLTRACE convention)",
|
| 645 |
+
value=""
|
| 646 |
+
)
|
| 647 |
+
push_hf_token = gr.Textbox(
|
| 648 |
+
label="HuggingFace Token",
|
| 649 |
+
placeholder="hf_...",
|
| 650 |
+
info="API token with write permissions",
|
| 651 |
+
type="password"
|
| 652 |
+
)
|
| 653 |
+
push_private = gr.Checkbox(
|
| 654 |
+
label="Make dataset private",
|
| 655 |
+
value=False,
|
| 656 |
+
info="Private datasets are only visible to you"
|
| 657 |
+
)
|
| 658 |
+
push_button = gr.Button("π€ Push to HuggingFace Hub", variant="primary", size="lg")
|
| 659 |
+
|
| 660 |
+
with gr.Column():
|
| 661 |
+
push_output = gr.JSON(label="Upload Result")
|
| 662 |
+
|
| 663 |
+
gr.Markdown("""
|
| 664 |
+
### π After Upload
|
| 665 |
+
|
| 666 |
+
Once uploaded, you can:
|
| 667 |
+
1. **View your dataset** at the URL provided in the output
|
| 668 |
+
2. **Use in SMOLTRACE** evaluations with the command shown
|
| 669 |
+
3. **Share with your team** (if public) or manage access (if private)
|
| 670 |
+
|
| 671 |
+
**Example**: After uploading to `company/smoltrace-finance-tasks`:
|
| 672 |
+
```bash
|
| 673 |
+
smoltrace-eval --model openai/gpt-4 --dataset-name company/smoltrace-finance-tasks
|
| 674 |
+
```
|
| 675 |
+
""")
|
| 676 |
+
|
| 677 |
+
async def run_push_dataset(dataset_json, repo_name, hf_token, private):
|
| 678 |
+
"""Push dataset to hub with async support."""
|
| 679 |
+
try:
|
| 680 |
+
import json
|
| 681 |
+
result = await push_dataset_to_hub(
|
| 682 |
+
dataset_json=dataset_json,
|
| 683 |
+
repo_name=repo_name,
|
| 684 |
+
hf_token=hf_token,
|
| 685 |
+
private=private
|
| 686 |
+
)
|
| 687 |
+
return json.loads(result)
|
| 688 |
+
except Exception as e:
|
| 689 |
+
return {"error": str(e)}
|
| 690 |
+
|
| 691 |
+
push_button.click(
|
| 692 |
+
fn=run_push_dataset,
|
| 693 |
+
inputs=[push_dataset_json, push_repo_name, push_hf_token, push_private],
|
| 694 |
+
outputs=[push_output]
|
| 695 |
+
)
|
| 696 |
+
|
| 697 |
+
# Tab 9: MCP Resources & Prompts
|
| 698 |
with gr.Tab("π MCP Resources & Prompts"):
|
| 699 |
gr.Markdown("""
|
| 700 |
## MCP Resources & Prompts
|
| 701 |
|
| 702 |
+
Beyond the 7 MCP Tools, this server also exposes **MCP Resources** and **MCP Prompts**
|
| 703 |
that MCP clients can use directly.
|
| 704 |
|
| 705 |
### MCP Resources (Read-Only Data Access)
|
|
|
|
| 952 |
outputs=[prompt_output]
|
| 953 |
)
|
| 954 |
|
| 955 |
+
# Tab 10: API Documentation
|
| 956 |
with gr.Tab("π API Documentation"):
|
| 957 |
gr.Markdown("""
|
| 958 |
## MCP Tool Specifications
|
|
|
|
| 1043 |
|
| 1044 |
---
|
| 1045 |
|
| 1046 |
+
### 6. generate_synthetic_dataset
|
| 1047 |
+
|
| 1048 |
+
**Description**: Generate domain-specific synthetic test datasets for SMOLTRACE evaluations using AI
|
| 1049 |
+
|
| 1050 |
+
**Parameters**:
|
| 1051 |
+
- `domain` (str, required): The domain for synthetic tasks (e.g., "finance", "healthcare", "travel", "ecommerce", "customer_support")
|
| 1052 |
+
- `tool_names` (str, required): Comma-separated list of tool names to include (e.g., "get_weather,search_web,calculator")
|
| 1053 |
+
- `num_tasks` (int): Number of synthetic tasks to generate (default: 10, range: 5-100)
|
| 1054 |
+
- `difficulty_distribution` (str): How to distribute task difficulty (default: "balanced")
|
| 1055 |
+
- Options: "balanced" (40% easy, 40% medium, 20% hard), "easy_only", "medium_only", "hard_only", "progressive" (50% easy, 30% medium, 20% hard)
|
| 1056 |
+
- `agent_type` (str): Target agent type for tasks (default: "both")
|
| 1057 |
+
- Options: "tool" (ToolCallingAgent), "code" (CodeAgent), "both" (50/50 mix)
|
| 1058 |
+
|
| 1059 |
+
**Returns**: JSON object with dataset_info (including batch statistics), tasks array (SMOLTRACE format), and usage_instructions
|
| 1060 |
+
|
| 1061 |
+
**π Batched Generation**:
|
| 1062 |
+
- Requests >20 tasks are automatically split into parallel batches
|
| 1063 |
+
- Each batch generates up to 20 tasks concurrently
|
| 1064 |
+
- Example: 100 tasks = 5 parallel batches (20 tasks each)
|
| 1065 |
+
- Timeout: 120 seconds per batch
|
| 1066 |
+
- Token limit: 8,192 per batch (40,960 total for 100 tasks)
|
| 1067 |
+
|
| 1068 |
+
**Performance**:
|
| 1069 |
+
- 5-20 tasks: Single batch, ~30-60 seconds
|
| 1070 |
+
- 21-100 tasks: Multiple parallel batches, ~60-120 seconds per batch
|
| 1071 |
+
|
| 1072 |
+
**SMOLTRACE Task Format**:
|
| 1073 |
+
Each task includes: `id`, `prompt`, `expected_tool`, `expected_tool_calls` (optional), `difficulty`, `agent_type`, `expected_keywords` (optional)
|
| 1074 |
+
|
| 1075 |
+
**Use Cases**:
|
| 1076 |
+
- Create custom evaluation datasets for industry-specific domains
|
| 1077 |
+
- Test agents with proprietary tools and APIs
|
| 1078 |
+
- Generate benchmarks for internal workflows
|
| 1079 |
+
- Rapid prototyping of evaluation scenarios
|
| 1080 |
+
|
| 1081 |
+
---
|
| 1082 |
+
|
| 1083 |
+
### 7. push_dataset_to_hub
|
| 1084 |
+
|
| 1085 |
+
**Description**: Push a generated synthetic dataset to HuggingFace Hub
|
| 1086 |
+
|
| 1087 |
+
**Parameters**:
|
| 1088 |
+
- `dataset_json` (str, required): JSON string containing the tasks array from generate_synthetic_dataset
|
| 1089 |
+
- `repo_name` (str, required): HuggingFace repository name following SMOLTRACE naming convention
|
| 1090 |
+
- Format: `{username}/smoltrace-{domain}-tasks` or `{username}/smoltrace-{domain}-tasks-v{version}`
|
| 1091 |
+
- Examples: `kshitij/smoltrace-finance-tasks`, `kshitij/smoltrace-healthcare-tasks-v2`
|
| 1092 |
+
- `hf_token` (str, required): HuggingFace API token with write permissions
|
| 1093 |
+
- `private` (bool): Whether to create a private repository (default: False)
|
| 1094 |
+
|
| 1095 |
+
**Returns**: JSON object with upload status, repository URL, and dataset information
|
| 1096 |
+
|
| 1097 |
+
**Validation**:
|
| 1098 |
+
- β
Checks SMOLTRACE naming convention (`smoltrace-` prefix required)
|
| 1099 |
+
- β
Validates all tasks have required fields (id, prompt, expected_tool, difficulty, agent_type)
|
| 1100 |
+
- β
Verifies HuggingFace token has write permissions
|
| 1101 |
+
- β
Handles repository creation if it doesn't exist
|
| 1102 |
+
|
| 1103 |
+
**Workflow**:
|
| 1104 |
+
1. Generate synthetic dataset using `generate_synthetic_dataset`
|
| 1105 |
+
2. Extract the `tasks` array from the response JSON
|
| 1106 |
+
3. Convert tasks array to JSON string
|
| 1107 |
+
4. Call `push_dataset_to_hub` with the JSON string and desired repo name
|
| 1108 |
+
5. Share the dataset URL with your team or use in SMOLTRACE evaluations
|
| 1109 |
+
|
| 1110 |
+
**Example Integration**:
|
| 1111 |
+
```python
|
| 1112 |
+
# Step 1: Generate dataset
|
| 1113 |
+
result = generate_synthetic_dataset(
|
| 1114 |
+
domain="finance",
|
| 1115 |
+
tool_names="get_stock_price,calculate_roi,fetch_company_info",
|
| 1116 |
+
num_tasks=50
|
| 1117 |
+
)
|
| 1118 |
+
|
| 1119 |
+
# Step 2: Extract tasks
|
| 1120 |
+
import json
|
| 1121 |
+
data = json.loads(result)
|
| 1122 |
+
tasks_json = json.dumps(data["tasks"])
|
| 1123 |
+
|
| 1124 |
+
# Step 3: Push to HuggingFace
|
| 1125 |
+
push_result = push_dataset_to_hub(
|
| 1126 |
+
dataset_json=tasks_json,
|
| 1127 |
+
repo_name="your-username/smoltrace-finance-tasks",
|
| 1128 |
+
hf_token="hf_xxx",
|
| 1129 |
+
private=False
|
| 1130 |
+
)
|
| 1131 |
+
```
|
| 1132 |
+
|
| 1133 |
+
---
|
| 1134 |
+
|
| 1135 |
## MCP Integration
|
| 1136 |
|
| 1137 |
This Gradio app is MCP-enabled. When deployed to HuggingFace Spaces, it can be accessed via MCP clients.
|
|
|
|
| 1144 |
|
| 1145 |
### What's Exposed via MCP:
|
| 1146 |
|
| 1147 |
+
#### 7 MCP Tools (AI-Powered)
|
| 1148 |
+
The seven tools above (`analyze_leaderboard`, `debug_trace`, `estimate_cost`, `compare_runs`, `get_dataset`, `generate_synthetic_dataset`, `push_dataset_to_hub`)
|
| 1149 |
are automatically exposed as MCP tools and can be called from any MCP client.
|
| 1150 |
|
| 1151 |
#### 3 MCP Resources (Data Access)
|
|
|
|
| 1181 |
return demo
|
| 1182 |
|
| 1183 |
if __name__ == "__main__":
|
| 1184 |
+
logger.info("=" * 70)
|
| 1185 |
+
logger.info("TraceMind MCP Server - HuggingFace Space (Track 1)")
|
| 1186 |
+
logger.info("=" * 70)
|
| 1187 |
+
logger.info("MCP Server: TraceMind Agent Evaluation Platform v1.0.0")
|
| 1188 |
+
logger.info("Protocol: Model Context Protocol (MCP)")
|
| 1189 |
+
logger.info("Transport: Gradio Native MCP Support (SSE)")
|
| 1190 |
+
logger.info("MCP Endpoint: https://kshitijthakkar-tracemind-mcp-server.hf.space/gradio_api/mcp/")
|
| 1191 |
+
logger.info("=" * 70)
|
| 1192 |
+
logger.info("Features:")
|
| 1193 |
+
logger.info(" β 7 AI-Powered Tools (Leaderboard + Trace + Cost + Dataset)")
|
| 1194 |
+
logger.info(" β 3 Real-Time Resources (leaderboard, trace, cost data)")
|
| 1195 |
+
logger.info(" β 3 Prompt Templates (analysis, debug, optimization)")
|
| 1196 |
+
logger.info(" β Google Gemini 2.5 Pro - Intelligent Analysis")
|
| 1197 |
+
logger.info(" β HuggingFace Dataset Integration")
|
| 1198 |
+
logger.info(" β SMOLTRACE Format Support")
|
| 1199 |
+
logger.info(" β Synthetic Dataset Generation")
|
| 1200 |
+
logger.info("=" * 70)
|
| 1201 |
+
logger.info("Tool Categories:")
|
| 1202 |
+
logger.info(" π Analysis: analyze_leaderboard, compare_runs")
|
| 1203 |
+
logger.info(" π Debugging: debug_trace")
|
| 1204 |
+
logger.info(" οΏ½οΏ½ Cost: estimate_cost")
|
| 1205 |
+
logger.info(" π¦ Data: get_dataset")
|
| 1206 |
+
logger.info(" π§ͺ Generation: generate_synthetic_dataset, push_dataset_to_hub")
|
| 1207 |
+
logger.info("=" * 70)
|
| 1208 |
+
logger.info("Compatible Clients:")
|
| 1209 |
+
logger.info(" β’ Claude Desktop")
|
| 1210 |
+
logger.info(" β’ Continue.dev (VS Code)")
|
| 1211 |
+
logger.info(" β’ Cline (VS Code)")
|
| 1212 |
+
logger.info(" β’ Any MCP-compatible client")
|
| 1213 |
+
logger.info("=" * 70)
|
| 1214 |
+
logger.info("How to Connect (Claude Desktop/HF MCP Client):")
|
| 1215 |
+
logger.info(" 1. Go to https://huggingface.co/settings/mcp")
|
| 1216 |
+
logger.info(" 2. Add Space: kshitijthakkar-tracemind-mcp-server")
|
| 1217 |
+
logger.info(" 3. Start using TraceMind tools in your MCP client!")
|
| 1218 |
+
logger.info("=" * 70)
|
| 1219 |
+
logger.info("Starting Gradio UI + MCP Server on 0.0.0.0:7860...")
|
| 1220 |
+
logger.info("Waiting for connections...")
|
| 1221 |
+
logger.info("=" * 70)
|
| 1222 |
+
|
| 1223 |
+
try:
|
| 1224 |
+
# Create Gradio interface
|
| 1225 |
+
demo = create_gradio_ui()
|
| 1226 |
+
|
| 1227 |
+
# Launch with MCP server enabled
|
| 1228 |
+
demo.launch(
|
| 1229 |
+
server_name="0.0.0.0",
|
| 1230 |
+
server_port=7860,
|
| 1231 |
+
mcp_server=True # Enable MCP server functionality
|
| 1232 |
+
)
|
| 1233 |
+
|
| 1234 |
+
except Exception as e:
|
| 1235 |
+
logger.error(f"Failed to start server: {e}")
|
| 1236 |
+
logger.error("Check that:")
|
| 1237 |
+
logger.error(" 1. GEMINI_API_KEY environment variable is set")
|
| 1238 |
+
logger.error(" 2. Port 7860 is available")
|
| 1239 |
+
logger.error(" 3. All dependencies are installed")
|
| 1240 |
+
raise
|
|
@@ -12,13 +12,13 @@ import json
|
|
| 12 |
class GeminiClient:
|
| 13 |
"""Client for Google Gemini API"""
|
| 14 |
|
| 15 |
-
def __init__(self, api_key: Optional[str] = None, model_name: str = "gemini-2.5-flash"):
|
| 16 |
"""
|
| 17 |
Initialize Gemini client
|
| 18 |
|
| 19 |
Args:
|
| 20 |
api_key: Gemini API key (defaults to GEMINI_API_KEY env var)
|
| 21 |
-
model_name: Model to use (default: gemini-2.5-flash, can also use gemini-2.5-flash
|
| 22 |
"""
|
| 23 |
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
| 24 |
if not self.api_key:
|
|
|
|
| 12 |
class GeminiClient:
|
| 13 |
"""Client for Google Gemini API"""
|
| 14 |
|
| 15 |
+
def __init__(self, api_key: Optional[str] = None, model_name: str = "gemini-2.5-flash-lite"):
|
| 16 |
"""
|
| 17 |
Initialize Gemini client
|
| 18 |
|
| 19 |
Args:
|
| 20 |
api_key: Gemini API key (defaults to GEMINI_API_KEY env var)
|
| 21 |
+
model_name: Model to use (default: gemini-2.5-flash-lite, can also use gemini-2.5-flash)
|
| 22 |
"""
|
| 23 |
self.api_key = api_key or os.getenv("GEMINI_API_KEY")
|
| 24 |
if not self.api_key:
|
|
@@ -1,14 +1,34 @@
|
|
| 1 |
"""
|
| 2 |
-
MCP Tool Implementations for TraceMind
|
| 3 |
|
| 4 |
-
|
| 5 |
-
-
|
| 6 |
-
- 3 MCP Resources: leaderboard data, trace data, cost data
|
| 7 |
-
- 3 MCP Prompts: analysis prompts, debug prompts, optimization prompts
|
| 8 |
|
| 9 |
With Gradio's native MCP support (mcp_server=True), these are automatically
|
| 10 |
exposed based on decorators (@gr.mcp.tool, @gr.mcp.resource, @gr.mcp.prompt),
|
| 11 |
docstrings, and type hints.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
"""
|
| 13 |
|
| 14 |
import os
|
|
@@ -1114,3 +1134,475 @@ def optimization_prompt(
|
|
| 1114 |
|
| 1115 |
template = templates.get(optimization_goal, {}).get(constraints, templates["cost"]["maintain_quality"])
|
| 1116 |
return template
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
+
MCP Tool Implementations for TraceMind MCP Server
|
| 3 |
|
| 4 |
+
This module implements 13 MCP components (7 Tools + 3 Resources + 3 Prompts) for
|
| 5 |
+
AI-powered agent evaluation analysis.
|
|
|
|
|
|
|
| 6 |
|
| 7 |
With Gradio's native MCP support (mcp_server=True), these are automatically
|
| 8 |
exposed based on decorators (@gr.mcp.tool, @gr.mcp.resource, @gr.mcp.prompt),
|
| 9 |
docstrings, and type hints.
|
| 10 |
+
|
| 11 |
+
π οΈ Tools (7 AI-Powered):
|
| 12 |
+
π analyze_leaderboard - Get AI insights from evaluation leaderboard data
|
| 13 |
+
π debug_trace - Debug agent execution traces with AI assistance
|
| 14 |
+
π° estimate_cost - Predict evaluation costs with AI recommendations
|
| 15 |
+
βοΈ compare_runs - Compare two evaluation runs with AI analysis
|
| 16 |
+
π¦ get_dataset - Load SMOLTRACE datasets as JSON for flexible analysis
|
| 17 |
+
π§ͺ generate_synthetic_dataset - Create domain-specific test datasets
|
| 18 |
+
π€ push_dataset_to_hub - Upload datasets to HuggingFace Hub
|
| 19 |
+
|
| 20 |
+
π¦ Resources (3 Data Access):
|
| 21 |
+
leaderboard://{repo} - Raw leaderboard data in JSON format
|
| 22 |
+
trace://{trace_id}/{repo} - Raw OpenTelemetry trace data
|
| 23 |
+
cost://model/{model_name} - Model pricing and hardware cost data
|
| 24 |
+
|
| 25 |
+
π Prompts (3 Templates):
|
| 26 |
+
analysis_prompt - Standardized templates for analysis requests
|
| 27 |
+
debug_prompt - Standardized templates for debugging scenarios
|
| 28 |
+
optimization_prompt - Standardized templates for optimization goals
|
| 29 |
+
|
| 30 |
+
All AI analysis powered by Google Gemini 2.5 Pro.
|
| 31 |
+
Track 1: Building MCP Servers - Enterprise Category
|
| 32 |
"""
|
| 33 |
|
| 34 |
import os
|
|
|
|
| 1134 |
|
| 1135 |
template = templates.get(optimization_goal, {}).get(constraints, templates["cost"]["maintain_quality"])
|
| 1136 |
return template
|
| 1137 |
+
|
| 1138 |
+
|
| 1139 |
+
# ========================================
|
| 1140 |
+
# NEW TOOLS: Synthetic Dataset Generation
|
| 1141 |
+
# ========================================
|
| 1142 |
+
|
| 1143 |
+
@gr.mcp.tool()
|
| 1144 |
+
async def generate_synthetic_dataset(
|
| 1145 |
+
domain: str,
|
| 1146 |
+
tool_names: str,
|
| 1147 |
+
num_tasks: int = 10,
|
| 1148 |
+
difficulty_distribution: str = "balanced",
|
| 1149 |
+
agent_type: str = "both"
|
| 1150 |
+
) -> str:
|
| 1151 |
+
"""
|
| 1152 |
+
Generate domain-specific synthetic test datasets for SMOLTRACE evaluations using AI.
|
| 1153 |
+
|
| 1154 |
+
This tool uses Google Gemini 2.5 Pro to create realistic, domain-specific evaluation
|
| 1155 |
+
tasks that follow the SMOLTRACE task dataset format. Perfect for creating custom
|
| 1156 |
+
benchmarks when standard datasets don't fit your use case.
|
| 1157 |
+
|
| 1158 |
+
**π Batched Generation for Scale**:
|
| 1159 |
+
- Requests >20 tasks are automatically split into parallel batches
|
| 1160 |
+
- Utilizes Gemini's large context window efficiently
|
| 1161 |
+
- Supports up to 100 tasks with 120s timeout per batch
|
| 1162 |
+
- Example: 100 tasks = 5 parallel batches (20 tasks each)
|
| 1163 |
+
|
| 1164 |
+
**Enterprise Use Case**: Quickly create evaluation datasets for:
|
| 1165 |
+
- Custom tools and APIs your agents use
|
| 1166 |
+
- Industry-specific domains (finance, healthcare, legal, manufacturing, etc.)
|
| 1167 |
+
- Internal workflows and business processes
|
| 1168 |
+
- Specialized agent capabilities
|
| 1169 |
+
|
| 1170 |
+
**Security**: Requires GEMINI_API_KEY environment variable.
|
| 1171 |
+
|
| 1172 |
+
Args:
|
| 1173 |
+
domain (str): The domain for synthetic tasks (e.g., "finance", "healthcare", "travel", "ecommerce", "customer_support")
|
| 1174 |
+
tool_names (str): Comma-separated list of tool names to include (e.g., "get_weather,search_web,calculator")
|
| 1175 |
+
num_tasks (int): Number of synthetic tasks to generate. Must be between 5 and 100. Default: 10
|
| 1176 |
+
- 5-20 tasks: Single batch (fast, ~30-60s)
|
| 1177 |
+
- 21-100 tasks: Multiple parallel batches (slower, ~60-120s per batch)
|
| 1178 |
+
difficulty_distribution (str): How to distribute task difficulty. Options: "balanced" (40% easy, 40% medium, 20% hard), "easy_only", "medium_only", "hard_only", "progressive" (50% easy, 30% medium, 20% hard). Default: "balanced"
|
| 1179 |
+
agent_type (str): Target agent type for tasks. Options: "tool" (ToolCallingAgent), "code" (CodeAgent), "both" (50/50 mix). Default: "both"
|
| 1180 |
+
|
| 1181 |
+
Returns:
|
| 1182 |
+
str: JSON-formatted response with dataset_info (including batch statistics), tasks array (SMOLTRACE format), and usage_instructions
|
| 1183 |
+
"""
|
| 1184 |
+
try:
|
| 1185 |
+
# Initialize Gemini client
|
| 1186 |
+
gemini_client = GeminiClient()
|
| 1187 |
+
|
| 1188 |
+
# Validate inputs
|
| 1189 |
+
if num_tasks < 5 or num_tasks > 100:
|
| 1190 |
+
return json.dumps({
|
| 1191 |
+
"error": "num_tasks must be between 5 and 100",
|
| 1192 |
+
"num_tasks_provided": num_tasks
|
| 1193 |
+
}, indent=2)
|
| 1194 |
+
|
| 1195 |
+
# Parse tool names
|
| 1196 |
+
tools = [tool.strip() for tool in tool_names.split(",") if tool.strip()]
|
| 1197 |
+
if len(tools) == 0:
|
| 1198 |
+
return json.dumps({
|
| 1199 |
+
"error": "At least one tool name must be provided",
|
| 1200 |
+
"tool_names_provided": tool_names
|
| 1201 |
+
}, indent=2)
|
| 1202 |
+
|
| 1203 |
+
# Calculate distributions
|
| 1204 |
+
difficulty_counts = _calculate_difficulty_distribution(num_tasks, difficulty_distribution)
|
| 1205 |
+
agent_type_counts = _calculate_agent_type_distribution(num_tasks, agent_type)
|
| 1206 |
+
|
| 1207 |
+
# Create generation prompt
|
| 1208 |
+
generation_prompt = f"""You are an expert at creating synthetic evaluation datasets for AI agents.
|
| 1209 |
+
|
| 1210 |
+
Generate {num_tasks} synthetic test tasks for the **{domain}** domain following the SMOLTRACE task format.
|
| 1211 |
+
|
| 1212 |
+
**Available Tools**: {", ".join(tools)}
|
| 1213 |
+
|
| 1214 |
+
**Difficulty Distribution**:
|
| 1215 |
+
- Easy ({difficulty_counts['easy']} tasks): Single tool call, straightforward input, clear expected output
|
| 1216 |
+
- Medium ({difficulty_counts['medium']} tasks): Multiple tool calls OR complex input parsing OR conditional logic
|
| 1217 |
+
- Hard ({difficulty_counts['hard']} tasks): Multiple tools, complex reasoning, edge cases, error handling
|
| 1218 |
+
|
| 1219 |
+
**Agent Type Distribution**:
|
| 1220 |
+
- Tool Agent ({agent_type_counts['tool']} tasks): Uses ToolCallingAgent - declarative tool calling
|
| 1221 |
+
- Code Agent ({agent_type_counts['code']} tasks): Uses CodeAgent - writes Python code with tools
|
| 1222 |
+
|
| 1223 |
+
**SMOLTRACE Task Format** (required structure):
|
| 1224 |
+
```json
|
| 1225 |
+
{{
|
| 1226 |
+
"id": "string - unique identifier like '{domain.lower()}_{{tool}}_{{number}}'",
|
| 1227 |
+
"prompt": "string - clear, specific task description",
|
| 1228 |
+
"expected_tool": "string - the tool name that should be used",
|
| 1229 |
+
"expected_tool_calls": "integer - how many times the tool should be called (optional, default 1)",
|
| 1230 |
+
"difficulty": "string - 'easy', 'medium', or 'hard'",
|
| 1231 |
+
"agent_type": "string - 'tool' or 'code'",
|
| 1232 |
+
"expected_keywords": "array of strings - keywords expected in response (optional)"
|
| 1233 |
+
}}
|
| 1234 |
+
```
|
| 1235 |
+
|
| 1236 |
+
**Generation Guidelines**:
|
| 1237 |
+
1. **Domain Specificity**: Make tasks realistic and specific to the {domain} domain
|
| 1238 |
+
2. **Tool Usage**: Ensure each task requires using one of: {", ".join(tools)}
|
| 1239 |
+
3. **Prompt Quality**: Write clear, unambiguous prompts that an agent can execute
|
| 1240 |
+
4. **Expected Keywords**: Include 2-4 expected keywords for validation (optional but recommended)
|
| 1241 |
+
5. **Variety**: Vary the tasks to cover different aspects of the domain
|
| 1242 |
+
|
| 1243 |
+
**IMPORTANT**: Return ONLY a valid JSON array of tasks. No explanatory text, no markdown formatting, no code blocks. Just the raw JSON array starting with [ and ending with ].
|
| 1244 |
+
|
| 1245 |
+
Generate exactly {num_tasks} tasks:"""
|
| 1246 |
+
|
| 1247 |
+
print(f"[GENERATE_SYNTHETIC_DATASET] Generating {num_tasks} tasks for domain '{domain}'...")
|
| 1248 |
+
print(f"[GENERATE_SYNTHETIC_DATASET] Tools: {', '.join(tools)}")
|
| 1249 |
+
|
| 1250 |
+
# Import required modules
|
| 1251 |
+
import asyncio
|
| 1252 |
+
import google.generativeai as genai
|
| 1253 |
+
|
| 1254 |
+
# Determine batching strategy
|
| 1255 |
+
# Gemini can handle ~20 tasks per call with 8192 token output limit
|
| 1256 |
+
TASKS_PER_BATCH = 20
|
| 1257 |
+
num_batches = (num_tasks + TASKS_PER_BATCH - 1) // TASKS_PER_BATCH # Ceiling division
|
| 1258 |
+
|
| 1259 |
+
if num_batches > 1:
|
| 1260 |
+
print(f"[GENERATE_SYNTHETIC_DATASET] Large request detected. Splitting into {num_batches} parallel batches...")
|
| 1261 |
+
|
| 1262 |
+
# Create batch generation tasks
|
| 1263 |
+
async def generate_batch(batch_num: int, batch_size: int, batch_difficulty: dict, batch_agent_type: dict):
|
| 1264 |
+
"""Generate a single batch of tasks"""
|
| 1265 |
+
batch_prompt = f"""You are an expert at creating synthetic evaluation datasets for AI agents.
|
| 1266 |
+
|
| 1267 |
+
Generate {batch_size} synthetic test tasks for the **{domain}** domain following the SMOLTRACE task format.
|
| 1268 |
+
|
| 1269 |
+
**Available Tools**: {", ".join(tools)}
|
| 1270 |
+
|
| 1271 |
+
**Difficulty Distribution for this batch**:
|
| 1272 |
+
- Easy ({batch_difficulty['easy']} tasks): Single tool call, straightforward input, clear expected output
|
| 1273 |
+
- Medium ({batch_difficulty['medium']} tasks): Multiple tool calls OR complex input parsing OR conditional logic
|
| 1274 |
+
- Hard ({batch_difficulty['hard']} tasks): Multiple tools, complex reasoning, edge cases, error handling
|
| 1275 |
+
|
| 1276 |
+
**Agent Type Distribution for this batch**:
|
| 1277 |
+
- Tool Agent ({batch_agent_type['tool']} tasks): Uses ToolCallingAgent - declarative tool calling
|
| 1278 |
+
- Code Agent ({batch_agent_type['code']} tasks): Uses CodeAgent - writes Python code with tools
|
| 1279 |
+
|
| 1280 |
+
**SMOLTRACE Task Format** (required structure):
|
| 1281 |
+
```json
|
| 1282 |
+
{{
|
| 1283 |
+
"id": "string - unique identifier like '{domain.lower()}_{{tool}}_batch{batch_num}_{{number}}'",
|
| 1284 |
+
"prompt": "string - clear, specific task description",
|
| 1285 |
+
"expected_tool": "string - the tool name that should be used",
|
| 1286 |
+
"expected_tool_calls": "integer - how many times the tool should be called (optional, default 1)",
|
| 1287 |
+
"difficulty": "string - 'easy', 'medium', or 'hard'",
|
| 1288 |
+
"agent_type": "string - 'tool' or 'code'",
|
| 1289 |
+
"expected_keywords": "array of strings - keywords expected in response (optional)"
|
| 1290 |
+
}}
|
| 1291 |
+
```
|
| 1292 |
+
|
| 1293 |
+
**Generation Guidelines**:
|
| 1294 |
+
1. **Domain Specificity**: Make tasks realistic and specific to the {domain} domain
|
| 1295 |
+
2. **Tool Usage**: Ensure each task requires using one of: {", ".join(tools)}
|
| 1296 |
+
3. **Prompt Quality**: Write clear, unambiguous prompts that an agent can execute
|
| 1297 |
+
4. **Expected Keywords**: Include 2-4 expected keywords for validation (optional but recommended)
|
| 1298 |
+
5. **Variety**: Vary the tasks to cover different aspects of the domain
|
| 1299 |
+
6. **Unique IDs**: Include 'batch{batch_num}' in task IDs to ensure uniqueness across batches
|
| 1300 |
+
|
| 1301 |
+
**IMPORTANT**: Return ONLY a valid JSON array of tasks. No explanatory text, no markdown formatting, no code blocks. Just the raw JSON array starting with [ and ending with ].
|
| 1302 |
+
|
| 1303 |
+
Generate exactly {batch_size} tasks:"""
|
| 1304 |
+
|
| 1305 |
+
generation_config = {
|
| 1306 |
+
"temperature": 0.8, # Higher for creativity and diversity
|
| 1307 |
+
"top_p": 0.95,
|
| 1308 |
+
"top_k": 40,
|
| 1309 |
+
"max_output_tokens": 8192,
|
| 1310 |
+
}
|
| 1311 |
+
|
| 1312 |
+
try:
|
| 1313 |
+
response = await asyncio.wait_for(
|
| 1314 |
+
gemini_client.model.generate_content_async(
|
| 1315 |
+
batch_prompt,
|
| 1316 |
+
generation_config=generation_config
|
| 1317 |
+
),
|
| 1318 |
+
timeout=120.0 # 120 seconds per batch for larger datasets
|
| 1319 |
+
)
|
| 1320 |
+
return response.text, None
|
| 1321 |
+
except Exception as e:
|
| 1322 |
+
return None, str(e)
|
| 1323 |
+
|
| 1324 |
+
# Split difficulty and agent type distributions across batches
|
| 1325 |
+
def split_distribution(total_counts: dict, num_batches: int, batch_num: int, remaining_tasks: int):
|
| 1326 |
+
"""Split distribution counts across batches fairly"""
|
| 1327 |
+
batch_counts = {}
|
| 1328 |
+
for key, total in total_counts.items():
|
| 1329 |
+
# Calculate fair share for this batch
|
| 1330 |
+
base_share = total // num_batches
|
| 1331 |
+
extra = 1 if batch_num < (total % num_batches) else 0
|
| 1332 |
+
batch_counts[key] = min(base_share + extra, remaining_tasks)
|
| 1333 |
+
return batch_counts
|
| 1334 |
+
|
| 1335 |
+
# Generate all batches in parallel
|
| 1336 |
+
batch_tasks = []
|
| 1337 |
+
remaining_tasks = num_tasks
|
| 1338 |
+
|
| 1339 |
+
for batch_num in range(num_batches):
|
| 1340 |
+
batch_size = min(TASKS_PER_BATCH, remaining_tasks)
|
| 1341 |
+
|
| 1342 |
+
# Calculate distributions for this batch
|
| 1343 |
+
batch_difficulty = split_distribution(difficulty_counts, num_batches, batch_num, batch_size)
|
| 1344 |
+
batch_agent_type = split_distribution(agent_type_counts, num_batches, batch_num, batch_size)
|
| 1345 |
+
|
| 1346 |
+
batch_tasks.append(generate_batch(batch_num, batch_size, batch_difficulty, batch_agent_type))
|
| 1347 |
+
remaining_tasks -= batch_size
|
| 1348 |
+
|
| 1349 |
+
print(f"[GENERATE_SYNTHETIC_DATASET] Executing {num_batches} parallel Gemini API calls...")
|
| 1350 |
+
|
| 1351 |
+
# Execute all batches in parallel
|
| 1352 |
+
batch_results = await asyncio.gather(*batch_tasks)
|
| 1353 |
+
|
| 1354 |
+
# Combine and validate results
|
| 1355 |
+
all_tasks = []
|
| 1356 |
+
errors = []
|
| 1357 |
+
|
| 1358 |
+
for batch_num, (response_text, error) in enumerate(batch_results):
|
| 1359 |
+
if error:
|
| 1360 |
+
errors.append(f"Batch {batch_num} failed: {error}")
|
| 1361 |
+
continue
|
| 1362 |
+
|
| 1363 |
+
try:
|
| 1364 |
+
# Clean response (remove markdown if present)
|
| 1365 |
+
cleaned_response = response_text.strip()
|
| 1366 |
+
if cleaned_response.startswith("```"):
|
| 1367 |
+
import re
|
| 1368 |
+
match = re.search(r'```(?:json)?\s*\n(.*?)\n```', cleaned_response, re.DOTALL)
|
| 1369 |
+
if match:
|
| 1370 |
+
cleaned_response = match.group(1)
|
| 1371 |
+
|
| 1372 |
+
# Parse JSON
|
| 1373 |
+
batch_tasks_parsed = json.loads(cleaned_response)
|
| 1374 |
+
|
| 1375 |
+
if not isinstance(batch_tasks_parsed, list):
|
| 1376 |
+
errors.append(f"Batch {batch_num} did not return a JSON array")
|
| 1377 |
+
continue
|
| 1378 |
+
|
| 1379 |
+
all_tasks.extend(batch_tasks_parsed)
|
| 1380 |
+
|
| 1381 |
+
except json.JSONDecodeError as e:
|
| 1382 |
+
errors.append(f"Batch {batch_num} JSON parsing failed: {str(e)}")
|
| 1383 |
+
|
| 1384 |
+
# Check if we got enough tasks
|
| 1385 |
+
if len(all_tasks) == 0:
|
| 1386 |
+
return json.dumps({
|
| 1387 |
+
"error": "All batches failed to generate tasks",
|
| 1388 |
+
"batch_errors": errors,
|
| 1389 |
+
"suggestion": "Check GEMINI_API_KEY and try again"
|
| 1390 |
+
}, indent=2)
|
| 1391 |
+
|
| 1392 |
+
if errors:
|
| 1393 |
+
print(f"[GENERATE_SYNTHETIC_DATASET] Warning: Some batches failed: {errors}")
|
| 1394 |
+
|
| 1395 |
+
print(f"[GENERATE_SYNTHETIC_DATASET] Successfully generated {len(all_tasks)} tasks across {num_batches} batch(es)")
|
| 1396 |
+
|
| 1397 |
+
# Validate required fields for all tasks
|
| 1398 |
+
synthetic_tasks = all_tasks
|
| 1399 |
+
required_fields = ["id", "prompt", "expected_tool", "difficulty", "agent_type"]
|
| 1400 |
+
for i, task in enumerate(synthetic_tasks):
|
| 1401 |
+
missing_fields = [field for field in required_fields if field not in task]
|
| 1402 |
+
if missing_fields:
|
| 1403 |
+
return json.dumps({
|
| 1404 |
+
"error": f"Task {i} is missing required fields: {missing_fields}",
|
| 1405 |
+
"task": task
|
| 1406 |
+
}, indent=2)
|
| 1407 |
+
|
| 1408 |
+
# Return formatted dataset with metadata
|
| 1409 |
+
result = {
|
| 1410 |
+
"dataset_info": {
|
| 1411 |
+
"domain": domain,
|
| 1412 |
+
"tools": tools,
|
| 1413 |
+
"num_tasks_requested": num_tasks,
|
| 1414 |
+
"num_tasks_generated": len(synthetic_tasks),
|
| 1415 |
+
"num_batches": num_batches,
|
| 1416 |
+
"batches_succeeded": num_batches - len(errors),
|
| 1417 |
+
"batches_failed": len(errors) if errors else 0,
|
| 1418 |
+
"batch_errors": errors if errors else None,
|
| 1419 |
+
"difficulty_distribution": difficulty_counts,
|
| 1420 |
+
"agent_type_distribution": agent_type_counts,
|
| 1421 |
+
"generated_at": datetime.now().isoformat(),
|
| 1422 |
+
"smoltrace_naming_convention": f"{{username}}/smoltrace-{domain.lower()}-tasks",
|
| 1423 |
+
"warning": f"β οΈ {len(errors)} batch(es) failed. Generated {len(synthetic_tasks)}/{num_tasks} tasks." if errors else None
|
| 1424 |
+
},
|
| 1425 |
+
"tasks": synthetic_tasks,
|
| 1426 |
+
"usage_instructions": {
|
| 1427 |
+
"format": "SMOLTRACE task dataset format",
|
| 1428 |
+
"naming_convention": f"Follow SMOLTRACE naming: {{username}}/smoltrace-{domain.lower()}-tasks or {{username}}/smoltrace-{domain.lower()}-tasks-v1 for versioning",
|
| 1429 |
+
"how_to_upload": [
|
| 1430 |
+
"Option 1: Use the push_dataset_to_hub tool in this MCP server",
|
| 1431 |
+
"Option 2: Manual upload with Python code (see example_code below)"
|
| 1432 |
+
],
|
| 1433 |
+
"example_code": f"""from datasets import Dataset
|
| 1434 |
+
|
| 1435 |
+
# Extract tasks from this response
|
| 1436 |
+
tasks = result["tasks"]
|
| 1437 |
+
|
| 1438 |
+
# Create and push to HuggingFace (following SMOLTRACE naming convention)
|
| 1439 |
+
dataset = Dataset.from_list(tasks)
|
| 1440 |
+
dataset.push_to_hub("your-username/smoltrace-{domain.lower()}-tasks")
|
| 1441 |
+
|
| 1442 |
+
# Use in SMOLTRACE evaluation
|
| 1443 |
+
# smoltrace-eval --model openai/gpt-4 --dataset-name your-username/smoltrace-{domain.lower()}-tasks"""
|
| 1444 |
+
}
|
| 1445 |
+
}
|
| 1446 |
+
|
| 1447 |
+
return json.dumps(result, indent=2, default=str)
|
| 1448 |
+
|
| 1449 |
+
except Exception as e:
|
| 1450 |
+
return json.dumps({
|
| 1451 |
+
"error": f"Failed to generate synthetic dataset: {str(e)}",
|
| 1452 |
+
"domain": domain,
|
| 1453 |
+
"tools": tool_names
|
| 1454 |
+
}, indent=2)
|
| 1455 |
+
|
| 1456 |
+
|
| 1457 |
+
@gr.mcp.tool()
|
| 1458 |
+
async def push_dataset_to_hub(
|
| 1459 |
+
dataset_json: str,
|
| 1460 |
+
repo_name: str,
|
| 1461 |
+
hf_token: str,
|
| 1462 |
+
private: bool = False
|
| 1463 |
+
) -> str:
|
| 1464 |
+
"""
|
| 1465 |
+
Push a generated synthetic dataset to HuggingFace Hub.
|
| 1466 |
+
|
| 1467 |
+
This tool uploads datasets created by generate_synthetic_dataset (or any SMOLTRACE-format
|
| 1468 |
+
dataset) to HuggingFace Hub, making them ready for use in SMOLTRACE evaluations.
|
| 1469 |
+
|
| 1470 |
+
**Naming Convention**: Repo name should follow SMOLTRACE convention:
|
| 1471 |
+
- Format: {username}/smoltrace-{domain}-tasks or {username}/smoltrace-{domain}-tasks-v{version}
|
| 1472 |
+
- Examples: "mycompany/smoltrace-finance-tasks", "alice/smoltrace-healthcare-tasks-v2"
|
| 1473 |
+
|
| 1474 |
+
**Security**: Requires valid HuggingFace token with write permissions.
|
| 1475 |
+
|
| 1476 |
+
Args:
|
| 1477 |
+
dataset_json (str): JSON string containing the tasks array (from generate_synthetic_dataset output, use the "tasks" field)
|
| 1478 |
+
repo_name (str): HuggingFace repository name following SMOLTRACE naming: {username}/smoltrace-{domain}-tasks
|
| 1479 |
+
hf_token (str): HuggingFace API token with write permissions (get from https://huggingface.co/settings/tokens)
|
| 1480 |
+
private (bool): Whether to create a private dataset. Default: False (public)
|
| 1481 |
+
|
| 1482 |
+
Returns:
|
| 1483 |
+
str: JSON response with upload status, dataset URL, and next steps
|
| 1484 |
+
"""
|
| 1485 |
+
try:
|
| 1486 |
+
from huggingface_hub import HfApi
|
| 1487 |
+
|
| 1488 |
+
# Validate repo name follows SMOLTRACE convention
|
| 1489 |
+
if "smoltrace-" not in repo_name and "-tasks" not in repo_name:
|
| 1490 |
+
return json.dumps({
|
| 1491 |
+
"warning": "Repository name doesn't follow SMOLTRACE naming convention",
|
| 1492 |
+
"expected_format": "{username}/smoltrace-{domain}-tasks or {username}/smoltrace-{domain}-tasks-v{version}",
|
| 1493 |
+
"your_repo_name": repo_name,
|
| 1494 |
+
"recommendation": "Consider renaming to follow the convention for consistency with SMOLTRACE ecosystem",
|
| 1495 |
+
"proceeding": "Continuing with upload..."
|
| 1496 |
+
}, indent=2)
|
| 1497 |
+
|
| 1498 |
+
# Parse dataset JSON
|
| 1499 |
+
try:
|
| 1500 |
+
tasks = json.loads(dataset_json)
|
| 1501 |
+
if not isinstance(tasks, list):
|
| 1502 |
+
return json.dumps({
|
| 1503 |
+
"error": "dataset_json must be a JSON array of tasks",
|
| 1504 |
+
"type_received": str(type(tasks))
|
| 1505 |
+
}, indent=2)
|
| 1506 |
+
except json.JSONDecodeError as e:
|
| 1507 |
+
return json.dumps({
|
| 1508 |
+
"error": "Invalid JSON in dataset_json",
|
| 1509 |
+
"parse_error": str(e)
|
| 1510 |
+
}, indent=2)
|
| 1511 |
+
|
| 1512 |
+
# Validate task structure
|
| 1513 |
+
required_fields = ["id", "prompt", "expected_tool", "difficulty", "agent_type"]
|
| 1514 |
+
for i, task in enumerate(tasks):
|
| 1515 |
+
missing_fields = [field for field in required_fields if field not in task]
|
| 1516 |
+
if missing_fields:
|
| 1517 |
+
return json.dumps({
|
| 1518 |
+
"error": f"Task {i} is missing required SMOLTRACE fields: {missing_fields}",
|
| 1519 |
+
"task": task
|
| 1520 |
+
}, indent=2)
|
| 1521 |
+
|
| 1522 |
+
# Create dataset and push to hub
|
| 1523 |
+
from datasets import Dataset
|
| 1524 |
+
|
| 1525 |
+
dataset = Dataset.from_list(tasks)
|
| 1526 |
+
|
| 1527 |
+
print(f"[PUSH_DATASET_TO_HUB] Uploading {len(tasks)} tasks to {repo_name}...")
|
| 1528 |
+
|
| 1529 |
+
# Push to hub
|
| 1530 |
+
dataset.push_to_hub(
|
| 1531 |
+
repo_name,
|
| 1532 |
+
token=hf_token,
|
| 1533 |
+
private=private
|
| 1534 |
+
)
|
| 1535 |
+
|
| 1536 |
+
# Return success response
|
| 1537 |
+
result = {
|
| 1538 |
+
"status": "success",
|
| 1539 |
+
"message": f"Successfully uploaded {len(tasks)} tasks to HuggingFace Hub",
|
| 1540 |
+
"dataset_info": {
|
| 1541 |
+
"repository": repo_name,
|
| 1542 |
+
"num_tasks": len(tasks),
|
| 1543 |
+
"visibility": "private" if private else "public",
|
| 1544 |
+
"dataset_url": f"https://huggingface.co/datasets/{repo_name}"
|
| 1545 |
+
},
|
| 1546 |
+
"next_steps": {
|
| 1547 |
+
"view_dataset": f"https://huggingface.co/datasets/{repo_name}",
|
| 1548 |
+
"use_in_smoltrace": f"smoltrace-eval --model openai/gpt-4 --dataset-name {repo_name}",
|
| 1549 |
+
"share_with_team": f"Team members can access at https://huggingface.co/datasets/{repo_name}" if not private else "Dataset is private - share access via HuggingFace settings"
|
| 1550 |
+
}
|
| 1551 |
+
}
|
| 1552 |
+
|
| 1553 |
+
return json.dumps(result, indent=2)
|
| 1554 |
+
|
| 1555 |
+
except ImportError:
|
| 1556 |
+
return json.dumps({
|
| 1557 |
+
"error": "Required packages not installed",
|
| 1558 |
+
"missing_packages": "datasets, huggingface_hub",
|
| 1559 |
+
"install_command": "pip install datasets huggingface_hub"
|
| 1560 |
+
}, indent=2)
|
| 1561 |
+
except Exception as e:
|
| 1562 |
+
return json.dumps({
|
| 1563 |
+
"error": f"Failed to push dataset to hub: {str(e)}",
|
| 1564 |
+
"repo_name": repo_name
|
| 1565 |
+
}, indent=2)
|
| 1566 |
+
|
| 1567 |
+
|
| 1568 |
+
# Helper functions for synthetic dataset generation
|
| 1569 |
+
def _calculate_difficulty_distribution(num_tasks: int, difficulty_distribution: str) -> dict:
|
| 1570 |
+
"""Calculate how many tasks of each difficulty to generate."""
|
| 1571 |
+
if difficulty_distribution == "balanced":
|
| 1572 |
+
easy = int(num_tasks * 0.4)
|
| 1573 |
+
medium = int(num_tasks * 0.4)
|
| 1574 |
+
hard = num_tasks - easy - medium
|
| 1575 |
+
elif difficulty_distribution == "easy_only":
|
| 1576 |
+
easy, medium, hard = num_tasks, 0, 0
|
| 1577 |
+
elif difficulty_distribution == "medium_only":
|
| 1578 |
+
easy, medium, hard = 0, num_tasks, 0
|
| 1579 |
+
elif difficulty_distribution == "hard_only":
|
| 1580 |
+
easy, medium, hard = 0, 0, num_tasks
|
| 1581 |
+
elif difficulty_distribution == "progressive":
|
| 1582 |
+
easy = int(num_tasks * 0.5)
|
| 1583 |
+
medium = int(num_tasks * 0.3)
|
| 1584 |
+
hard = num_tasks - easy - medium
|
| 1585 |
+
else:
|
| 1586 |
+
# Default to balanced
|
| 1587 |
+
easy = int(num_tasks * 0.4)
|
| 1588 |
+
medium = int(num_tasks * 0.4)
|
| 1589 |
+
hard = num_tasks - easy - medium
|
| 1590 |
+
|
| 1591 |
+
return {"easy": easy, "medium": medium, "hard": hard}
|
| 1592 |
+
|
| 1593 |
+
|
| 1594 |
+
def _calculate_agent_type_distribution(num_tasks: int, agent_type: str) -> dict:
|
| 1595 |
+
"""Calculate how many tasks for each agent type to generate."""
|
| 1596 |
+
if agent_type == "tool":
|
| 1597 |
+
return {"tool": num_tasks, "code": 0}
|
| 1598 |
+
elif agent_type == "code":
|
| 1599 |
+
return {"tool": 0, "code": num_tasks}
|
| 1600 |
+
elif agent_type == "both":
|
| 1601 |
+
tool_count = num_tasks // 2
|
| 1602 |
+
code_count = num_tasks - tool_count
|
| 1603 |
+
return {"tool": tool_count, "code": code_count}
|
| 1604 |
+
else:
|
| 1605 |
+
# Default to both
|
| 1606 |
+
tool_count = num_tasks // 2
|
| 1607 |
+
code_count = num_tasks - tool_count
|
| 1608 |
+
return {"tool": tool_count, "code": code_count}
|