kshitijthakkar commited on
Commit
adff627
Β·
1 Parent(s): 4cb2baf

fix: Correct tool count from 9/10 to 11 tools across all documentation

Browse files

CRITICAL CONSISTENCY FIX:

Actual verified count from mcp_tools.py:
- 11 tools (

@gr
.mcp.tool() decorators)
- 3 resources (

@gr
.mcp.resource())
- 3 prompts (

@gr
.mcp.prompt())
- Total: 17 MCP components

Changes in app.py:
- Line 4: Updated docstring header: 10 tools β†’ 11 tools
- Lines 30-41: Added missing 'analyze_results' tool to tools list
- Line 115: Updated UI text: 10 tools β†’ 11 tools
- Line 143: Updated ecosystem description: 10 tools β†’ 11 tools
- Lines 1443-1444: Updated MCP section: 10 tools β†’ 11 tools, added analyze_results to tool list

Changes in README.md:
- Line 119: 15 Total Components (9 Tools) β†’ 17 Total Components (11 Tools)
- Line 121: 'Nine Production-Ready Tools' β†’ 'Eleven Production-Ready Tools'
- Lines 896-900: Changelog updated: 15 components β†’ 17 components, added missing tools

Missing tools now documented:
- analyze_results (detailed test result analysis)
- generate_prompt_template (custom prompt generation)

This resolves major discrepancies where different sections claimed 9, 10, or 15 components.

Files changed (2) hide show
  1. README.md +6 -6
  2. app.py +6 -5
README.md CHANGED
@@ -116,9 +116,9 @@ All analysis is powered by **Google Gemini 2.5 Pro** for intelligent, context-aw
116
  - βœ… **Testing Interface**: Beautiful Gradio UI for testing all components
117
  - βœ… **Enterprise Focus**: Cost optimization, debugging, decision support, and custom dataset generation
118
  - βœ… **Google Gemini Powered**: Leverages Gemini 2.5 Pro for intelligent analysis
119
- - βœ… **15 Total Components**: 9 Tools + 3 Resources + 3 Prompts
120
 
121
- ### πŸ› οΈ Nine Production-Ready Tools
122
 
123
  #### 1. analyze_leaderboard
124
 
@@ -893,11 +893,11 @@ For issues or questions:
893
 
894
  ### v1.0.0 (2025-11-14)
895
  - Initial release for MCP Hackathon
896
- - **Complete MCP Implementation**: 15 components total
897
- - 9 AI-powered and optimized tools:
898
- - analyze_leaderboard, debug_trace, estimate_cost, compare_runs (AI-powered)
899
  - get_top_performers, get_leaderboard_summary (optimized for token reduction)
900
- - get_dataset, generate_synthetic_dataset, push_dataset_to_hub (data management)
901
  - 3 data resources (leaderboard, trace, cost data)
902
  - 3 prompt templates (analysis, debug, optimization)
903
  - Gradio native MCP support with decorators (`@gr.mcp.*`)
 
116
  - βœ… **Testing Interface**: Beautiful Gradio UI for testing all components
117
  - βœ… **Enterprise Focus**: Cost optimization, debugging, decision support, and custom dataset generation
118
  - βœ… **Google Gemini Powered**: Leverages Gemini 2.5 Pro for intelligent analysis
119
+ - βœ… **17 Total Components**: 11 Tools + 3 Resources + 3 Prompts
120
 
121
+ ### πŸ› οΈ Eleven Production-Ready Tools
122
 
123
  #### 1. analyze_leaderboard
124
 
 
893
 
894
  ### v1.0.0 (2025-11-14)
895
  - Initial release for MCP Hackathon
896
+ - **Complete MCP Implementation**: 17 components total
897
+ - 11 AI-powered and optimized tools:
898
+ - analyze_leaderboard, debug_trace, estimate_cost, compare_runs, analyze_results (AI-powered analysis)
899
  - get_top_performers, get_leaderboard_summary (optimized for token reduction)
900
+ - get_dataset, generate_synthetic_dataset, generate_prompt_template, push_dataset_to_hub (data management)
901
  - 3 data resources (leaderboard, trace, cost data)
902
  - 3 prompt templates (analysis, debug, optimization)
903
  - Gradio native MCP support with decorators (`@gr.mcp.*`)
app.py CHANGED
@@ -2,7 +2,7 @@
2
  TraceMind MCP Server - Hugging Face Space Entry Point (Track 1)
3
 
4
  This file serves as the entry point for HuggingFace Space deployment.
5
- Exposes 10 AI-powered MCP tools + 3 Resources + 3 Prompts via Gradio's native MCP support.
6
 
7
  Built on Open Source Foundation:
8
  πŸ”­ TraceVerde (genai_otel_instrument) - Automatic OpenTelemetry instrumentation
@@ -32,6 +32,7 @@ Tools Provided:
32
  πŸ› debug_trace - Debug agent execution traces with AI
33
  πŸ’° estimate_cost - Predict evaluation costs before running
34
  βš–οΈ compare_runs - Compare evaluation runs with AI analysis
 
35
  πŸ† get_top_performers - Get top N models from leaderboard (optimized)
36
  πŸ“ˆ get_leaderboard_summary - Get leaderboard overview statistics
37
  πŸ“¦ get_dataset - Load SMOLTRACE datasets as JSON
@@ -111,7 +112,7 @@ def create_gradio_ui():
111
  gr.Markdown("""
112
  **Track 1 Submission**: Building MCP (Enterprise)
113
 
114
- *AI-powered MCP server providing 10 tools, 3 resources, and 3 prompts for agent evaluation analysis.*
115
  """)
116
 
117
  # TraceMind Ecosystem (Accordion)
@@ -139,7 +140,7 @@ def create_gradio_ui():
139
  **Track 1: Building MCP (Enterprise)**
140
  - Provides AI-powered MCP tools for analyzing evaluation data
141
  - Uses Google Gemini 2.5 Pro for intelligent insights
142
- - 10 tools + 3 resources + 3 prompts
143
  - [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
144
 
145
  #### 🧠 TraceMind-AI
@@ -1439,8 +1440,8 @@ def create_gradio_ui():
1439
 
1440
  ### What's Exposed via MCP:
1441
 
1442
- #### 10 MCP Tools (AI-Powered & Optimized)
1443
- The ten tools above (`analyze_leaderboard`, `debug_trace`, `estimate_cost`, `compare_runs`, `get_top_performers`, `get_leaderboard_summary`, `get_dataset`, `generate_synthetic_dataset`, `generate_prompt_template`, `push_dataset_to_hub`)
1444
  are automatically exposed as MCP tools and can be called from any MCP client.
1445
 
1446
  #### 3 MCP Resources (Data Access)
 
2
  TraceMind MCP Server - Hugging Face Space Entry Point (Track 1)
3
 
4
  This file serves as the entry point for HuggingFace Space deployment.
5
+ Exposes 11 AI-powered MCP tools + 3 Resources + 3 Prompts via Gradio's native MCP support.
6
 
7
  Built on Open Source Foundation:
8
  πŸ”­ TraceVerde (genai_otel_instrument) - Automatic OpenTelemetry instrumentation
 
32
  πŸ› debug_trace - Debug agent execution traces with AI
33
  πŸ’° estimate_cost - Predict evaluation costs before running
34
  βš–οΈ compare_runs - Compare evaluation runs with AI analysis
35
+ πŸ“‹ analyze_results - Analyze detailed test results with optimization recommendations
36
  πŸ† get_top_performers - Get top N models from leaderboard (optimized)
37
  πŸ“ˆ get_leaderboard_summary - Get leaderboard overview statistics
38
  πŸ“¦ get_dataset - Load SMOLTRACE datasets as JSON
 
112
  gr.Markdown("""
113
  **Track 1 Submission**: Building MCP (Enterprise)
114
 
115
+ *AI-powered MCP server providing 11 tools, 3 resources, and 3 prompts for agent evaluation analysis.*
116
  """)
117
 
118
  # TraceMind Ecosystem (Accordion)
 
140
  **Track 1: Building MCP (Enterprise)**
141
  - Provides AI-powered MCP tools for analyzing evaluation data
142
  - Uses Google Gemini 2.5 Pro for intelligent insights
143
+ - 11 tools + 3 resources + 3 prompts
144
  - [HF Space](https://huggingface.co/spaces/MCP-1st-Birthday/TraceMind-mcp-server)
145
 
146
  #### 🧠 TraceMind-AI
 
1440
 
1441
  ### What's Exposed via MCP:
1442
 
1443
+ #### 11 MCP Tools (AI-Powered & Optimized)
1444
+ The eleven tools above (`analyze_leaderboard`, `debug_trace`, `estimate_cost`, `compare_runs`, `analyze_results`, `get_top_performers`, `get_leaderboard_summary`, `get_dataset`, `generate_synthetic_dataset`, `generate_prompt_template`, `push_dataset_to_hub`)
1445
  are automatically exposed as MCP tools and can be called from any MCP client.
1446
 
1447
  #### 3 MCP Resources (Data Access)