Commit
·
b714b1e
1
Parent(s):
60c4817
feat: Add full support for HuggingFace Jobs hardware in cost estimator
Browse filesFixed the 'Value not in list of choices' error by adding all HF Jobs hardware options:
**HuggingFace Jobs hardware added:**
- CPU: cpu-basic, cpu-upgrade
- GPU: t4-small, t4-medium, l4x1, l4x4, a10g-small, a10g-large,
a10g-largex2, a10g-largex4, a100-large
- TPU: v5e-1x1, v5e-2x2, v5e-2x4
**Changes:**
1. Updated docstring to document all supported hardware
2. Added HF Jobs per-second pricing estimates (based on typical hourly rates)
3. Updated CO2 estimates for all HF Jobs hardware
4. Changed auto-selection: cpu-basic (API) / a10g-small (local)
5. Updated compute cost calculation to handle all hardware types
6. Updated pricing source metadata
Now cost estimation works for both Modal and HuggingFace Jobs hardware.
- mcp_tools.py +48 -16
mcp_tools.py
CHANGED
|
@@ -275,9 +275,9 @@ async def estimate_cost(
|
|
| 275 |
model (str): Model identifier in litellm format (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
|
| 276 |
agent_type (str): Type of agent capabilities to test. Options: "tool", "code", "both"
|
| 277 |
num_tests (int): Number of test cases to run. Must be between 10 and 1000. Default: 100
|
| 278 |
-
hardware (str): Hardware type for HuggingFace Jobs
|
| 279 |
Returns:
|
| 280 |
-
str: Markdown-formatted cost estimate with breakdown of LLM costs,
|
| 281 |
"""
|
| 282 |
try:
|
| 283 |
# Initialize Gemini client with provided key or from environment
|
|
@@ -301,11 +301,11 @@ async def estimate_cost(
|
|
| 301 |
|
| 302 |
# Auto-select hardware
|
| 303 |
if hardware == "auto":
|
| 304 |
-
hardware = "cpu" if is_api_model else "
|
| 305 |
|
| 306 |
-
#
|
| 307 |
-
|
| 308 |
-
# GPU Tasks
|
| 309 |
"gpu_b200": 0.001736, # Nvidia B200
|
| 310 |
"gpu_h200": 0.001261, # Nvidia H200
|
| 311 |
"gpu_h100": 0.001097, # Nvidia H100
|
|
@@ -315,10 +315,26 @@ async def estimate_cost(
|
|
| 315 |
"gpu_a10": 0.000306, # Nvidia A10
|
| 316 |
"gpu_l4": 0.000222, # Nvidia L4
|
| 317 |
"gpu_t4": 0.000164, # Nvidia T4
|
| 318 |
-
# CPU (per core)
|
| 319 |
"cpu": 0.0000131, # Physical core (2 vCPU equivalent)
|
| 320 |
-
|
| 321 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 322 |
}
|
| 323 |
|
| 324 |
# Get model costs from pricing database
|
|
@@ -380,12 +396,12 @@ async def estimate_cost(
|
|
| 380 |
|
| 381 |
total_duration_seconds = duration_per_test * num_tests
|
| 382 |
|
| 383 |
-
# Calculate
|
| 384 |
-
compute_rate_per_sec =
|
| 385 |
|
| 386 |
-
# For CPU, estimate core usage (assume 2 cores for agent workload)
|
| 387 |
-
# For GPU, direct cost
|
| 388 |
-
if hardware
|
| 389 |
num_cores = 2 # Estimate 2 cores for typical agent workload
|
| 390 |
total_compute_cost = total_duration_seconds * compute_rate_per_sec * num_cores
|
| 391 |
else:
|
|
@@ -393,6 +409,7 @@ async def estimate_cost(
|
|
| 393 |
|
| 394 |
# Estimate CO2 (rough estimates in kg per hour)
|
| 395 |
co2_per_hour = {
|
|
|
|
| 396 |
"cpu": 0.05,
|
| 397 |
"gpu_t4": 0.10,
|
| 398 |
"gpu_l4": 0.12,
|
|
@@ -402,7 +419,22 @@ async def estimate_cost(
|
|
| 402 |
"gpu_a100_80gb": 0.28,
|
| 403 |
"gpu_h100": 0.30,
|
| 404 |
"gpu_h200": 0.32,
|
| 405 |
-
"gpu_b200": 0.35
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 406 |
}
|
| 407 |
|
| 408 |
total_co2_kg = (total_duration_seconds / 3600) * co2_per_hour.get(hardware, 0.05)
|
|
@@ -414,7 +446,7 @@ async def estimate_cost(
|
|
| 414 |
"num_tests": num_tests,
|
| 415 |
"hardware": hardware,
|
| 416 |
"is_api_model": is_api_model,
|
| 417 |
-
"pricing_source": "genai_otel pricing database + Modal compute costs",
|
| 418 |
"estimates": {
|
| 419 |
"llm_cost_usd": round(total_llm_cost, 6),
|
| 420 |
"llm_cost_per_test": round(llm_cost_per_test, 6),
|
|
|
|
| 275 |
model (str): Model identifier in litellm format (e.g., "openai/gpt-4", "meta-llama/Llama-3.1-8B")
|
| 276 |
agent_type (str): Type of agent capabilities to test. Options: "tool", "code", "both"
|
| 277 |
num_tests (int): Number of test cases to run. Must be between 10 and 1000. Default: 100
|
| 278 |
+
hardware (str): Hardware type for compute. Supports Modal (gpu_t4, gpu_a10, gpu_h200, etc.) and HuggingFace Jobs (cpu-basic, t4-small, a10g-small, a100-large, etc.). Default: "auto"
|
| 279 |
Returns:
|
| 280 |
+
str: Markdown-formatted cost estimate with breakdown of LLM costs, compute costs, duration, CO2 emissions, and optimization tips
|
| 281 |
"""
|
| 282 |
try:
|
| 283 |
# Initialize Gemini client with provided key or from environment
|
|
|
|
| 301 |
|
| 302 |
# Auto-select hardware
|
| 303 |
if hardware == "auto":
|
| 304 |
+
hardware = "cpu-basic" if is_api_model else "a10g-small"
|
| 305 |
|
| 306 |
+
# Compute costs (per second) - Modal + HuggingFace Jobs
|
| 307 |
+
compute_costs = {
|
| 308 |
+
# Modal GPU Tasks (per second)
|
| 309 |
"gpu_b200": 0.001736, # Nvidia B200
|
| 310 |
"gpu_h200": 0.001261, # Nvidia H200
|
| 311 |
"gpu_h100": 0.001097, # Nvidia H100
|
|
|
|
| 315 |
"gpu_a10": 0.000306, # Nvidia A10
|
| 316 |
"gpu_l4": 0.000222, # Nvidia L4
|
| 317 |
"gpu_t4": 0.000164, # Nvidia T4
|
| 318 |
+
# Modal CPU (per core)
|
| 319 |
"cpu": 0.0000131, # Physical core (2 vCPU equivalent)
|
| 320 |
+
|
| 321 |
+
# HuggingFace Jobs (estimated per second based on typical hourly rates)
|
| 322 |
+
# Note: HF Jobs pricing varies, these are estimates
|
| 323 |
+
"cpu-basic": 0.0000167, # ~$0.06/hour
|
| 324 |
+
"cpu-upgrade": 0.0000278, # ~$0.10/hour
|
| 325 |
+
"t4-small": 0.000167, # ~$0.60/hour
|
| 326 |
+
"t4-medium": 0.000278, # ~$1.00/hour
|
| 327 |
+
"l4x1": 0.000250, # ~$0.90/hour
|
| 328 |
+
"l4x4": 0.001000, # ~$3.60/hour
|
| 329 |
+
"a10g-small": 0.000333, # ~$1.20/hour
|
| 330 |
+
"a10g-large": 0.000556, # ~$2.00/hour
|
| 331 |
+
"a10g-largex2": 0.001111, # ~$4.00/hour
|
| 332 |
+
"a10g-largex4": 0.002222, # ~$8.00/hour
|
| 333 |
+
"a100-large": 0.001389, # ~$5.00/hour
|
| 334 |
+
# TPU (estimated)
|
| 335 |
+
"v5e-1x1": 0.000417, # ~$1.50/hour
|
| 336 |
+
"v5e-2x2": 0.001667, # ~$6.00/hour
|
| 337 |
+
"v5e-2x4": 0.003333 # ~$12.00/hour
|
| 338 |
}
|
| 339 |
|
| 340 |
# Get model costs from pricing database
|
|
|
|
| 396 |
|
| 397 |
total_duration_seconds = duration_per_test * num_tests
|
| 398 |
|
| 399 |
+
# Calculate compute costs (per second)
|
| 400 |
+
compute_rate_per_sec = compute_costs.get(hardware, compute_costs.get("cpu-basic", 0.0000167))
|
| 401 |
|
| 402 |
+
# For CPU-based hardware, estimate core usage (assume 2 cores for agent workload)
|
| 403 |
+
# For GPU/TPU, direct cost
|
| 404 |
+
if hardware in ["cpu", "cpu-basic", "cpu-upgrade"]:
|
| 405 |
num_cores = 2 # Estimate 2 cores for typical agent workload
|
| 406 |
total_compute_cost = total_duration_seconds * compute_rate_per_sec * num_cores
|
| 407 |
else:
|
|
|
|
| 409 |
|
| 410 |
# Estimate CO2 (rough estimates in kg per hour)
|
| 411 |
co2_per_hour = {
|
| 412 |
+
# Modal
|
| 413 |
"cpu": 0.05,
|
| 414 |
"gpu_t4": 0.10,
|
| 415 |
"gpu_l4": 0.12,
|
|
|
|
| 419 |
"gpu_a100_80gb": 0.28,
|
| 420 |
"gpu_h100": 0.30,
|
| 421 |
"gpu_h200": 0.32,
|
| 422 |
+
"gpu_b200": 0.35,
|
| 423 |
+
# HuggingFace Jobs
|
| 424 |
+
"cpu-basic": 0.03,
|
| 425 |
+
"cpu-upgrade": 0.04,
|
| 426 |
+
"t4-small": 0.08,
|
| 427 |
+
"t4-medium": 0.10,
|
| 428 |
+
"l4x1": 0.12,
|
| 429 |
+
"l4x4": 0.48,
|
| 430 |
+
"a10g-small": 0.13,
|
| 431 |
+
"a10g-large": 0.15,
|
| 432 |
+
"a10g-largex2": 0.30,
|
| 433 |
+
"a10g-largex4": 0.60,
|
| 434 |
+
"a100-large": 0.25,
|
| 435 |
+
"v5e-1x1": 0.18,
|
| 436 |
+
"v5e-2x2": 0.72,
|
| 437 |
+
"v5e-2x4": 1.44
|
| 438 |
}
|
| 439 |
|
| 440 |
total_co2_kg = (total_duration_seconds / 3600) * co2_per_hour.get(hardware, 0.05)
|
|
|
|
| 446 |
"num_tests": num_tests,
|
| 447 |
"hardware": hardware,
|
| 448 |
"is_api_model": is_api_model,
|
| 449 |
+
"pricing_source": "genai_otel pricing database + Modal/HF Jobs compute costs",
|
| 450 |
"estimates": {
|
| 451 |
"llm_cost_usd": round(total_llm_cost, 6),
|
| 452 |
"llm_cost_per_test": round(llm_cost_per_test, 6),
|