Spaces:
Running
Running
File size: 28,434 Bytes
c040b82 c2ee0af c040b82 c2ee0af c040b82 c2ee0af c040b82 c2ee0af c040b82 2d9152d c040b82 2d9152d c040b82 bb44e1f c040b82 bb44e1f c040b82 bb44e1f c040b82 bb44e1f c040b82 79f1857 bb44e1f c040b82 bb44e1f c040b82 bb44e1f c040b82 bb44e1f c040b82 bb44e1f c040b82 bb44e1f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 |
"""
Analytics Charts Component
Interactive visualizations for leaderboard analytics
"""
import plotly.graph_objects as go
import pandas as pd
import numpy as np
from typing import List, Dict, Any, Optional
def create_performance_heatmap(df: pd.DataFrame) -> go.Figure:
"""
Create an interactive heatmap of models × metrics
Args:
df: Leaderboard DataFrame with metrics
Returns:
Plotly figure with heatmap visualization
"""
if df.empty:
return _create_empty_figure("No data available for heatmap")
# Select metrics to display
metrics = [
'success_rate',
'avg_duration_ms',
'total_cost_usd',
'co2_emissions_g',
'gpu_utilization_avg',
'total_tokens'
]
# Filter to only available metrics
available_metrics = [m for m in metrics if m in df.columns]
if not available_metrics:
return _create_empty_figure("No metrics available for analysis")
# Aggregate by model (in case of multiple runs)
model_stats = df.groupby('model')[available_metrics].mean()
# Prepare data matrix (rows=metrics, columns=models)
heatmap_data = []
heatmap_text = []
metric_labels = []
for metric in available_metrics:
values = model_stats[metric].values
# Normalize to 0-1 scale
# For metrics where lower is better (duration, cost, co2), invert the scale
if metric in ['avg_duration_ms', 'total_cost_usd', 'co2_emissions_g']:
# Invert: lower is better (green)
max_val = values.max()
if max_val > 0:
normalized = 1 - (values / max_val)
else:
normalized = np.zeros_like(values)
else:
# Higher is better (green)
max_val = values.max()
if max_val > 0:
normalized = values / max_val
else:
normalized = np.zeros_like(values)
heatmap_data.append(normalized)
# Create hover text with actual values
if metric == 'success_rate':
text_row = [f"{v:.1f}%" for v in values]
elif metric == 'avg_duration_ms':
text_row = [f"{v:.0f}ms" for v in values]
elif metric in ['total_cost_usd']:
text_row = [f"${v:.4f}" for v in values]
elif metric == 'co2_emissions_g':
text_row = [f"{v:.2f}g" for v in values]
elif metric == 'gpu_utilization_avg':
text_row = [f"{v:.1f}%" if pd.notna(v) else "N/A" for v in values]
else:
text_row = [f"{v:.0f}" for v in values]
heatmap_text.append(text_row)
# Create readable metric labels
label = metric.replace('_', ' ').replace('avg', 'Avg').replace('usd', 'USD').title()
metric_labels.append(label)
# Get model names
models = model_stats.index.tolist()
# Shorten model names if too long
model_labels = [m.split('/')[-1] if '/' in m else m for m in models]
model_labels = [m[:20] + '...' if len(m) > 20 else m for m in model_labels]
# Create heatmap
fig = go.Figure(data=go.Heatmap(
z=heatmap_data,
x=model_labels,
y=metric_labels,
text=heatmap_text,
texttemplate='%{text}',
textfont={"size": 10},
colorscale='RdYlGn', # Red (bad) → Yellow → Green (good)
hoverongaps=False,
hovertemplate='<b>%{y}</b><br>Model: %{x}<br>Value: %{text}<br>Score: %{z:.2f}<extra></extra>',
colorbar=dict(
title=dict(
text="Performance<br>Score",
side="right"
),
tickmode="linear",
tick0=0,
dtick=0.25
)
))
fig.update_layout(
title={
'text': '🔥 Model Performance Heatmap',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 20}
},
xaxis_title='Model',
yaxis_title='Metric',
height=500,
plot_bgcolor='#f8f9fa',
paper_bgcolor='white',
xaxis=dict(tickangle=-45),
margin=dict(l=150, r=100, t=100, b=150),
)
return fig
def create_speed_accuracy_scatter(df: pd.DataFrame) -> go.Figure:
"""
Speed vs Accuracy trade-off scatter plot
Args:
df: Leaderboard DataFrame
Returns:
Plotly figure with scatter plot
"""
if df.empty:
return _create_empty_figure("No data available for scatter plot")
# Check required columns
required_cols = ['model', 'success_rate', 'avg_duration_ms']
if not all(col in df.columns for col in required_cols):
return _create_empty_figure(f"Missing required columns: {required_cols}")
# Aggregate by model
model_stats = df.groupby('model').agg({
'success_rate': 'mean',
'avg_duration_ms': 'mean',
'total_cost_usd': 'mean' if 'total_cost_usd' in df.columns else 'size',
'agent_type': 'first' if 'agent_type' in df.columns else 'size'
}).reset_index()
# Create figure
fig = go.Figure()
# Get unique agent types
agent_types = model_stats['agent_type'].unique() if 'agent_type' in model_stats.columns else ['all']
# Color scheme
colors = {
'tool': '#E67E22', # Orange
'code': '#3498DB', # Blue
'both': '#9B59B6', # Purple
'all': '#1ABC9C', # Teal
'unknown': '#95A5A6' # Gray
}
for agent_type in agent_types:
if agent_type == 'all':
subset = model_stats
else:
subset = model_stats[model_stats['agent_type'] == agent_type]
# Prepare hover text
hover_texts = []
for _, row in subset.iterrows():
model_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
hover = f"<b>{model_name}</b><br>"
hover += f"Success Rate: {row['success_rate']:.1f}%<br>"
hover += f"Avg Duration: {row['avg_duration_ms']:.0f}ms<br>"
if 'total_cost_usd' in row and pd.notna(row['total_cost_usd']):
hover += f"Cost: ${row['total_cost_usd']:.4f}"
hover_texts.append(hover)
# Bubble size based on cost (if available)
if 'total_cost_usd' in subset.columns:
sizes = subset['total_cost_usd'] * 5000 # Scale up for visibility
sizes = sizes.clip(lower=10, upper=100) # Reasonable range
else:
sizes = 30 # Default size
fig.add_trace(go.Scatter(
x=subset['avg_duration_ms'],
y=subset['success_rate'],
mode='markers+text',
name=str(agent_type).title(),
marker=dict(
size=sizes,
color=colors.get(str(agent_type).lower(), colors['unknown']),
opacity=0.7,
line=dict(width=2, color='white')
),
text=[m.split('/')[-1][:15] for m in subset['model']],
textposition='top center',
textfont=dict(size=9),
hovertext=hover_texts,
hoverinfo='text'
))
# Add quadrant lines (median split)
if len(model_stats) > 1:
median_speed = model_stats['avg_duration_ms'].median()
median_accuracy = model_stats['success_rate'].median()
fig.add_hline(
y=median_accuracy,
line_dash="dash",
line_color="gray",
opacity=0.4,
annotation_text=f"Median Accuracy: {median_accuracy:.1f}%",
annotation_position="right"
)
fig.add_vline(
x=median_speed,
line_dash="dash",
line_color="gray",
opacity=0.4,
annotation_text=f"Median Speed: {median_speed:.0f}ms",
annotation_position="top"
)
# Add zone annotations
max_accuracy = model_stats['success_rate'].max()
min_speed = model_stats['avg_duration_ms'].min()
fig.add_annotation(
x=min_speed + (median_speed - min_speed) * 0.5,
y=max_accuracy * 0.98,
text="⭐ Fast & Accurate",
showarrow=False,
font=dict(size=14, color='green', family='Arial Black'),
bgcolor='rgba(144, 238, 144, 0.2)',
borderpad=5
)
fig.update_layout(
title={
'text': '⚡ Speed vs Accuracy Trade-off',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 20}
},
xaxis_title='Average Duration (ms)',
yaxis_title='Success Rate (%)',
xaxis_type='log', # Log scale for duration
height=600,
plot_bgcolor='white',
paper_bgcolor='#f8f9fa',
showlegend=True,
legend=dict(
title=dict(text='Agent Type'),
orientation="v",
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
hovermode='closest'
)
# Add grid for better readability
fig.update_xaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
return fig
def create_cost_efficiency_scatter(df: pd.DataFrame) -> go.Figure:
"""
Cost-Performance Efficiency scatter plot
Args:
df: Leaderboard DataFrame
Returns:
Plotly figure with cost efficiency scatter
"""
if df.empty:
return _create_empty_figure("No data available for cost analysis")
# Check required columns
if 'success_rate' not in df.columns or 'total_cost_usd' not in df.columns:
return _create_empty_figure("Missing required columns: success_rate, total_cost_usd")
# Aggregate by model
agg_dict = {
'success_rate': 'mean',
'total_cost_usd': 'mean',
'avg_duration_ms': 'mean' if 'avg_duration_ms' in df.columns else 'size',
'provider': 'first' if 'provider' in df.columns else 'size'
}
model_stats = df.groupby('model').agg(agg_dict).reset_index()
# Handle zero costs for log scale visualization
# Replace zero costs with a small epsilon value (0.00001)
# This allows log scale to work properly while keeping all models visible
EPSILON = 0.00001
model_stats['total_cost_usd_display'] = model_stats['total_cost_usd'].apply(
lambda x: max(x, EPSILON)
)
# Calculate efficiency metric: success_rate / cost
model_stats['efficiency'] = model_stats['success_rate'] / (model_stats['total_cost_usd'] + 0.0001) # Avoid division by zero
# Create figure
fig = go.Figure()
# Get unique providers
providers = model_stats['provider'].unique() if 'provider' in model_stats.columns else ['all']
# Color scheme
provider_colors = {
'litellm': '#3498DB', # Blue (API)
'transformers': '#2ECC71', # Green (GPU/local)
'all': '#9B59B6', # Purple
'unknown': '#95A5A6' # Gray
}
for provider in providers:
if provider == 'all':
subset = model_stats
else:
subset = model_stats[model_stats['provider'] == provider]
# Prepare hover text
hover_texts = []
for _, row in subset.iterrows():
model_name = row['model'].split('/')[-1] if '/' in row['model'] else row['model']
hover = f"<b>{model_name}</b><br>"
hover += f"Success Rate: {row['success_rate']:.1f}%<br>"
# Show actual cost (even if zero) in hover text
if row['total_cost_usd'] == 0:
hover += f"Total Cost: $0.0000 (No cost data)<br>"
else:
hover += f"Total Cost: ${row['total_cost_usd']:.4f}<br>"
hover += f"Efficiency: {row['efficiency']:.0f} (points/$)<br>"
if 'avg_duration_ms' in row and pd.notna(row['avg_duration_ms']):
hover += f"Duration: {row['avg_duration_ms']:.0f}ms"
hover_texts.append(hover)
# Bubble size based on duration (if available)
if 'avg_duration_ms' in subset.columns:
# Invert: smaller duration = smaller bubble
sizes = subset['avg_duration_ms'] / 100 # Scale down
sizes = sizes.clip(lower=10, upper=80) # Reasonable range
else:
sizes = 30 # Default size
fig.add_trace(go.Scatter(
x=subset['total_cost_usd_display'], # Use adjusted cost for log scale
y=subset['success_rate'],
mode='markers+text',
name=str(provider).title(),
marker=dict(
size=sizes,
color=provider_colors.get(str(provider).lower(), provider_colors['unknown']),
opacity=0.7,
line=dict(width=2, color='white')
),
text=[m.split('/')[-1][:15] for m in subset['model']],
textposition='top center',
textfont=dict(size=9),
hovertext=hover_texts,
hoverinfo='text'
))
# Add cost bands
if len(model_stats) > 0:
max_cost = model_stats['total_cost_usd'].max()
# Budget band: < $0.01
if max_cost > 0.01:
fig.add_vrect(
x0=0, x1=0.01,
fillcolor="lightgreen", opacity=0.1,
layer="below", line_width=0,
annotation_text="Budget", annotation_position="top left"
)
# Mid band: $0.01-$0.10
if max_cost > 0.10:
fig.add_vrect(
x0=0.01, x1=0.10,
fillcolor="yellow", opacity=0.1,
layer="below", line_width=0,
annotation_text="Mid-Range", annotation_position="top left"
)
# Premium band: > $0.10
if max_cost > 0.10:
fig.add_vrect(
x0=0.10, x1=max_cost * 1.1,
fillcolor="orange", opacity=0.1,
layer="below", line_width=0,
annotation_text="Premium", annotation_position="top left"
)
# Highlight top 3 most efficient models
top_efficient = model_stats.nlargest(3, 'efficiency')
for _, row in top_efficient.iterrows():
fig.add_annotation(
x=row['total_cost_usd_display'], # Use adjusted cost for positioning
y=row['success_rate'],
text="⭐",
showarrow=False,
font=dict(size=20)
)
# Calculate axis ranges for proper log scale display
min_cost = model_stats['total_cost_usd_display'].min()
max_cost = model_stats['total_cost_usd_display'].max()
fig.update_layout(
title={
'text': '💰 Cost-Performance Efficiency',
'x': 0.5,
'xanchor': 'center',
'font': {'size': 20}
},
xaxis_title='Total Cost (USD)',
yaxis_title='Success Rate (%)',
xaxis_type='log', # Log scale for cost
xaxis=dict(
range=[np.log10(min_cost * 0.5), np.log10(max_cost * 2)], # Explicit log range
showgrid=True,
gridwidth=1,
gridcolor='lightgray'
),
height=600,
plot_bgcolor='white',
paper_bgcolor='#f8f9fa',
showlegend=True,
legend=dict(
title=dict(text='Provider'),
orientation="v",
yanchor="top",
y=0.99,
xanchor="right",
x=0.99
),
hovermode='closest'
)
# Add grid for better readability
fig.update_yaxes(showgrid=True, gridwidth=1, gridcolor='lightgray')
return fig
def _create_empty_figure(message: str) -> go.Figure:
"""
Create an empty figure with a message
Args:
message: Message to display
Returns:
Plotly figure with annotation
"""
fig = go.Figure()
fig.add_annotation(
text=message,
xref="paper", yref="paper",
x=0.5, y=0.5,
xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=16, color='gray')
)
fig.update_layout(
height=500,
plot_bgcolor='white',
paper_bgcolor='#f8f9fa',
xaxis=dict(showgrid=False, showticklabels=False, zeroline=False),
yaxis=dict(showgrid=False, showticklabels=False, zeroline=False)
)
return fig
def create_comparison_radar(runs: List[Dict[str, Any]]) -> go.Figure:
"""
Create a multi-dimensional radar chart comparing 2-3 runs
Args:
runs: List of run data dictionaries (2-3 models)
Returns:
Plotly figure with radar chart comparison
"""
if not runs or len(runs) < 2:
return _create_empty_figure("Please select at least 2 runs to compare")
if len(runs) > 3:
runs = runs[:3] # Limit to 3 runs for readability
# Define dimensions for radar chart
dimensions = []
dimension_names = []
# Helper function to normalize values (0-1 scale)
def normalize(values, invert=False):
"""Normalize values to 0-1, optionally inverting (lower is better)"""
values = np.array(values, dtype=float)
min_val, max_val = np.nanmin(values), np.nanmax(values)
if max_val == min_val:
return [0.5] * len(values)
normalized = (values - min_val) / (max_val - min_val)
if invert:
normalized = 1 - normalized
return normalized.tolist()
# Extract metrics from all runs
success_rates = [run.get('success_rate', 0) / 100 for run in runs] # Already 0-1
durations = [run.get('avg_duration_ms', 0) for run in runs]
costs = [run.get('total_cost_usd', 0) for run in runs]
tokens = [run.get('total_tokens', 0) for run in runs]
co2 = [run.get('co2_emissions_g', 0) for run in runs]
gpu_util = [run.get('gpu_utilization_avg', None) for run in runs]
# Calculate Token Efficiency (success per 1000 tokens)
# Use max() to avoid division by zero
token_efficiency = [
(run.get('success_rate', 0) / 100) / max((run.get('total_tokens', 0) / 1000), 0.001)
for run in runs
]
# Build dimensions (normalized 0-1)
dimensions.append(success_rates) # Already 0-1
dimension_names.append('Success Rate')
dimensions.append(normalize(durations, invert=True)) # Faster is better
dimension_names.append('Speed')
dimensions.append(normalize(costs, invert=True)) # Cheaper is better
dimension_names.append('Cost Efficiency')
dimensions.append(normalize(token_efficiency)) # Higher is better
dimension_names.append('Token Efficiency')
dimensions.append(normalize(co2, invert=True)) # Lower CO2 is better
dimension_names.append('CO2 Efficiency')
# Add GPU Utilization if available
if any(g is not None for g in gpu_util):
gpu_values = [g / 100 if g is not None else 0 for g in gpu_util] # Normalize to 0-1
dimensions.append(gpu_values)
dimension_names.append('GPU Utilization')
# Create radar chart
fig = go.Figure()
colors = ['#667eea', '#f093fb', '#43e97b'] # Purple, Pink, Green
for idx, run in enumerate(runs):
model_name = run.get('model', f'Run {idx+1}')
if '/' in model_name:
model_name = model_name.split('/')[-1] # Show only model name, not provider
# Extract values for this run across all dimensions
values = [dim[idx] for dim in dimensions]
# Close the radar chart by repeating first value
values_closed = values + [values[0]]
theta_closed = dimension_names + [dimension_names[0]]
fig.add_trace(go.Scatterpolar(
r=values_closed,
theta=theta_closed,
name=model_name,
fill='toself',
fillcolor=colors[idx],
opacity=0.3,
line=dict(color=colors[idx], width=2),
marker=dict(size=8, color=colors[idx]),
hovertemplate='<b>%{theta}</b><br>' +
'Score: %{r:.2f}<br>' +
f'<b>{model_name}</b>' +
'<extra></extra>'
))
fig.update_layout(
polar=dict(
bgcolor='#f8f9fa',
radialaxis=dict(
visible=True,
range=[0, 1],
showticklabels=True,
ticks='',
gridcolor='rgba(100, 100, 100, 0.2)',
tickfont=dict(size=10)
),
angularaxis=dict(
gridcolor='rgba(100, 100, 100, 0.2)',
linecolor='rgba(100, 100, 100, 0.4)',
tickfont=dict(size=12, color='#0f172a')
)
),
showlegend=True,
legend=dict(
orientation="h",
yanchor="bottom",
y=-0.2,
xanchor="center",
x=0.5,
bgcolor='rgba(255, 255, 255, 0.8)',
bordercolor='#ccc',
borderwidth=1
),
title=dict(
text='Multi-Dimensional Model Comparison',
x=0.5,
xanchor='center',
font=dict(size=18, color='#0f172a', family='Inter, sans-serif')
),
height=600,
paper_bgcolor='white',
font=dict(family='Inter, sans-serif')
)
return fig
def create_trends_plot(df: pd.DataFrame) -> go.Figure:
"""
Create trends visualization over time with enhanced GPU metrics
Args:
df: Leaderboard DataFrame with timestamp or evaluation_date column
Returns:
Plotly figure showing trends
"""
from plotly.subplots import make_subplots
try:
# Use evaluation_date or timestamp depending on what's available
date_col = 'evaluation_date' if 'evaluation_date' in df.columns else 'timestamp'
if df.empty or date_col not in df.columns:
fig = go.Figure()
fig.add_annotation(text="No trend data available", showarrow=False)
return fig
# Convert date column to datetime to avoid type errors
df[date_col] = pd.to_datetime(df[date_col], errors='coerce')
# Sort by date column
df_sorted = df.sort_values(date_col)
# Check which GPU metrics are available
has_gpu_util = 'gpu_utilization_avg' in df.columns and df_sorted['gpu_utilization_avg'].notna().any()
has_gpu_memory = 'gpu_memory_avg_mib' in df.columns and df_sorted['gpu_memory_avg_mib'].notna().any()
has_gpu_temp = 'gpu_temperature_avg' in df.columns and df_sorted['gpu_temperature_avg'].notna().any()
has_power_cost = 'power_cost_total_usd' in df.columns and df_sorted['power_cost_total_usd'].notna().any()
# Determine number of subplots based on available data
num_plots = 2 # Always show success rate and cost
if has_gpu_util:
num_plots += 1
if has_gpu_memory:
num_plots += 1
if has_gpu_temp:
num_plots += 1
if has_power_cost:
num_plots += 1
# Create subplots
subplot_titles = ["Success Rate Over Time", "Cost Over Time"]
if has_gpu_util:
subplot_titles.append("GPU Utilization Over Time")
if has_gpu_memory:
subplot_titles.append("GPU Memory Usage Over Time")
if has_gpu_temp:
subplot_titles.append("GPU Temperature Over Time")
if has_power_cost:
subplot_titles.append("Power Cost Over Time")
fig = make_subplots(
rows=num_plots, cols=1,
subplot_titles=subplot_titles,
vertical_spacing=0.08
)
current_row = 1
# Success rate trend
fig.add_trace(
go.Scatter(
x=df_sorted[date_col],
y=df_sorted['success_rate'],
mode='lines+markers',
name='Success Rate',
line=dict(color='#3498DB', width=2),
marker=dict(size=6),
hovertemplate='<b>%{x}</b><br>Success Rate: %{y:.1f}%<extra></extra>'
),
row=current_row, col=1
)
fig.update_yaxes(title_text="Success Rate (%)", row=current_row, col=1)
current_row += 1
# Cost trend
fig.add_trace(
go.Scatter(
x=df_sorted[date_col],
y=df_sorted['total_cost_usd'],
mode='lines+markers',
name='Cost (USD)',
line=dict(color='#E67E22', width=2),
marker=dict(size=6),
hovertemplate='<b>%{x}</b><br>Cost: $%{y:.4f}<extra></extra>'
),
row=current_row, col=1
)
fig.update_yaxes(title_text="Cost (USD)", row=current_row, col=1)
current_row += 1
# GPU Utilization trend (if available)
if has_gpu_util:
gpu_data = df_sorted[df_sorted['gpu_utilization_avg'].notna()]
fig.add_trace(
go.Scatter(
x=gpu_data[date_col],
y=gpu_data['gpu_utilization_avg'],
mode='lines+markers',
name='GPU Utilization',
line=dict(color='#9B59B6', width=2),
marker=dict(size=6),
hovertemplate='<b>%{x}</b><br>GPU Util: %{y:.1f}%<extra></extra>'
),
row=current_row, col=1
)
fig.update_yaxes(title_text="GPU Utilization (%)", row=current_row, col=1)
current_row += 1
# GPU Memory trend (if available)
if has_gpu_memory:
gpu_memory_data = df_sorted[df_sorted['gpu_memory_avg_mib'].notna()]
fig.add_trace(
go.Scatter(
x=gpu_memory_data[date_col],
y=gpu_memory_data['gpu_memory_avg_mib'],
mode='lines+markers',
name='GPU Memory',
line=dict(color='#1ABC9C', width=2),
marker=dict(size=6),
hovertemplate='<b>%{x}</b><br>GPU Memory: %{y:.0f} MiB<extra></extra>'
),
row=current_row, col=1
)
fig.update_yaxes(title_text="GPU Memory (MiB)", row=current_row, col=1)
current_row += 1
# GPU Temperature trend (if available)
if has_gpu_temp:
gpu_temp_data = df_sorted[df_sorted['gpu_temperature_avg'].notna()]
fig.add_trace(
go.Scatter(
x=gpu_temp_data[date_col],
y=gpu_temp_data['gpu_temperature_avg'],
mode='lines+markers',
name='GPU Temperature',
line=dict(color='#E74C3C', width=2),
marker=dict(size=6),
hovertemplate='<b>%{x}</b><br>GPU Temp: %{y:.1f}°C<extra></extra>'
),
row=current_row, col=1
)
fig.update_yaxes(title_text="GPU Temperature (°C)", row=current_row, col=1)
current_row += 1
# Power Cost trend (if available)
if has_power_cost:
power_cost_data = df_sorted[df_sorted['power_cost_total_usd'].notna()]
fig.add_trace(
go.Scatter(
x=power_cost_data[date_col],
y=power_cost_data['power_cost_total_usd'],
mode='lines+markers',
name='Power Cost',
line=dict(color='#F39C12', width=2),
marker=dict(size=6),
hovertemplate='<b>%{x}</b><br>Power Cost: $%{y:.4f}<extra></extra>'
),
row=current_row, col=1
)
fig.update_yaxes(title_text="Power Cost (USD)", row=current_row, col=1)
fig.update_xaxes(title_text="Date", row=num_plots, col=1)
# Calculate dynamic height based on number of plots
plot_height = max(400, num_plots * 200)
fig.update_layout(
height=plot_height,
showlegend=False,
margin=dict(l=50, r=50, t=50, b=50)
)
return fig
except Exception as e:
print(f"[ERROR] Creating trends plot: {e}")
import traceback
traceback.print_exc()
fig = go.Figure()
fig.add_annotation(text=f"Error creating trends: {str(e)}", showarrow=False)
return fig
|