Spaces:
Running
Running
File size: 13,455 Bytes
942ce50 fedc47d 942ce50 788f67c 942ce50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 |
"""
Thought Graph Visualization Component
Visualizes agent reasoning flow as an interactive network graph
"""
import plotly.graph_objects as go
import networkx as nx
from typing import List, Dict, Any, Tuple
import colorsys
def create_thought_graph(spans: List[Dict[str, Any]], trace_id: str = "Unknown") -> go.Figure:
"""
Create an interactive thought graph showing agent reasoning flow
This is different from the waterfall chart - it shows the logical flow
of the agent's thinking process (LLM calls, Tool calls, etc.) as a
directed graph rather than a timeline.
Args:
spans: List of OpenTelemetry span dictionaries
trace_id: Trace identifier
Returns:
Plotly figure with interactive network graph
"""
# Ensure spans is a list
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
if not spans:
# Return empty figure with message
fig = go.Figure()
fig.add_annotation(
text="No reasoning steps to display",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=20)
)
return fig
# Build graph from spans
G = nx.DiGraph()
# First pass: Add all nodes and build span_map
span_map = {}
for span in spans:
span_id = span.get('spanId') or span.get('span_id') or span.get('spanID')
if not span_id:
continue
# Get span details
name = span.get('name', 'Unknown')
kind = span.get('kind', 'INTERNAL')
attributes = span.get('attributes', {})
# Check for OpenInference span kind
if isinstance(attributes, dict) and 'openinference.span.kind' in attributes:
openinference_kind = attributes.get('openinference.span.kind', kind)
if openinference_kind: # Only call .upper() if not None
kind = openinference_kind.upper()
# Extract metadata for node
node_data = {
'span_id': span_id,
'name': name,
'kind': kind,
'attributes': attributes,
'status': span.get('status', {}).get('code', 'OK')
}
# Add token and cost info if available
if isinstance(attributes, dict):
# Token info
if 'gen_ai.usage.prompt_tokens' in attributes:
node_data['prompt_tokens'] = attributes['gen_ai.usage.prompt_tokens']
if 'gen_ai.usage.completion_tokens' in attributes:
node_data['completion_tokens'] = attributes['gen_ai.usage.completion_tokens']
# Cost info
if 'gen_ai.usage.cost.total' in attributes:
node_data['cost'] = attributes['gen_ai.usage.cost.total']
elif 'llm.usage.cost' in attributes:
node_data['cost'] = attributes['llm.usage.cost']
# Model info
if 'gen_ai.request.model' in attributes:
node_data['model'] = attributes['gen_ai.request.model']
elif 'llm.model' in attributes:
node_data['model'] = attributes['llm.model']
# Tool info
if 'tool.name' in attributes:
node_data['tool_name'] = attributes['tool.name']
# Add node to graph
G.add_node(span_id, **node_data)
span_map[span_id] = span
# Second pass: Add all edges (now all nodes exist in span_map)
for span in spans:
span_id = span.get('spanId') or span.get('span_id') or span.get('spanID')
if not span_id:
continue
parent_id = span.get('parentSpanId') or span.get('parent_span_id') or span.get('parentSpanID')
if parent_id and parent_id in span_map:
G.add_edge(parent_id, span_id)
print(f"[DEBUG] Added edge: {parent_id} β {span_id}")
print(f"[DEBUG] Graph created: {G.number_of_nodes()} nodes, {G.number_of_edges()} edges")
if G.number_of_nodes() == 0:
# Return empty figure with message
fig = go.Figure()
fig.add_annotation(
text="No valid spans to display",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=20)
)
return fig
# Calculate layout using hierarchical layout
try:
# Try to use hierarchical layout (for DAGs)
pos = nx.spring_layout(G, k=2, iterations=50, seed=42)
# If graph is a DAG, use hierarchical layout
if nx.is_directed_acyclic_graph(G):
# Get levels using longest_path_length
levels = {}
for node in G.nodes():
# Find longest path from any root to this node
try:
# Get all paths from roots to this node
roots = [n for n in G.nodes() if G.in_degree(n) == 0]
max_depth = 0
for root in roots:
if nx.has_path(G, root, node):
paths = list(nx.all_simple_paths(G, root, node))
max_depth = max(max_depth, max(len(p) for p in paths) if paths else 0)
levels[node] = max_depth
except:
levels[node] = 0
# Create hierarchical layout
pos = create_hierarchical_layout(G, levels)
except Exception as e:
print(f"[DEBUG] Layout calculation error: {e}")
# Fallback to circular layout
pos = nx.circular_layout(G)
# Extract node positions
node_x = []
node_y = []
node_text = []
node_colors = []
node_sizes = []
hover_text = []
for node in G.nodes():
x, y = pos[node]
node_x.append(x)
node_y.append(y)
# Get node data
node_data = G.nodes[node]
name = node_data.get('name', 'Unknown')
kind = node_data.get('kind', 'INTERNAL')
# Create label (shortened)
label = shorten_label(name, max_length=20)
node_text.append(label)
# Assign color based on kind
color = get_node_color(kind, node_data.get('status', 'OK'))
node_colors.append(color)
# Size based on importance (LLM and AGENT nodes are larger)
size = 40 if kind in ['LLM', 'AGENT', 'CHAIN'] else 30
node_sizes.append(size)
# Create detailed hover text
hover = f"<b>{name}</b><br>"
hover += f"Type: {kind}<br>"
hover += f"Status: {node_data.get('status', 'OK')}<br>"
if 'model' in node_data:
hover += f"Model: {node_data['model']}<br>"
if 'tool_name' in node_data:
hover += f"Tool: {node_data['tool_name']}<br>"
if 'prompt_tokens' in node_data or 'completion_tokens' in node_data:
# Ensure values are integers, not strings
prompt = int(node_data.get('prompt_tokens', 0) or 0) # Handle None values and convert to int
completion = int(node_data.get('completion_tokens', 0) or 0) # Handle None values and convert to int
hover += f"Tokens: {prompt + completion} (p:{prompt}, c:{completion})<br>"
if 'cost' in node_data and node_data['cost'] is not None:
cost = float(node_data['cost']) # Handle string values
hover += f"Cost: ${cost:.6f}<br>"
hover_text.append(hover)
# Extract edges
edge_x = []
edge_y = []
edge_traces = []
print(f"[DEBUG] Drawing {G.number_of_edges()} edges")
for edge in G.edges():
x0, y0 = pos[edge[0]]
x1, y1 = pos[edge[1]]
print(f"[DEBUG] Edge from ({x0:.2f}, {y0:.2f}) to ({x1:.2f}, {y1:.2f})")
# Create edge line (make it thicker and darker for visibility)
edge_trace = go.Scatter(
x=[x0, x1, None],
y=[y0, y1, None],
mode='lines',
line=dict(width=3, color='#555'), # Increased width from 2 to 3, darker color
hoverinfo='none',
showlegend=False
)
edge_traces.append(edge_trace)
# Add arrow annotation
edge_traces.append(create_arrow_annotation(x0, y0, x1, y1))
# Create node trace
node_trace = go.Scatter(
x=node_x,
y=node_y,
mode='markers+text',
marker=dict(
size=node_sizes,
color=node_colors,
line=dict(width=2, color='white')
),
text=node_text,
textposition='bottom center',
textfont=dict(size=10, color='#333'),
hovertext=hover_text,
hoverinfo='text',
showlegend=False
)
# Create figure
fig = go.Figure(data=edge_traces + [node_trace])
# Update layout with better visibility settings
fig.update_layout(
title={
'text': f"π§ Agent Thought Graph: {trace_id}",
'x': 0.5,
'xanchor': 'center',
'font': {'size': 20}
},
showlegend=False,
hovermode='closest',
margin=dict(t=100, b=40, l=40, r=40),
height=600,
xaxis=dict(
showgrid=False,
zeroline=False,
showticklabels=False,
range=[-0.1, 1.1] # Add padding to see edges at boundaries
),
yaxis=dict(
showgrid=False,
zeroline=False,
showticklabels=False,
range=[-0.1, 1.1] # Add padding to see edges at boundaries
),
plot_bgcolor='white', # Pure white background for maximum contrast
paper_bgcolor='#f8f9fa', # Light gray paper
annotations=[
dict(
text="π‘ Hover over nodes to see details | Arrows show execution flow",
xref="paper", yref="paper",
x=0.5, y=-0.05, xanchor='center', yanchor='top',
showarrow=False,
font=dict(size=11, color='#666')
)
]
)
# Add legend for node types
legend_items = create_legend_items()
fig.add_annotation(
text=legend_items,
xref="paper", yref="paper",
x=1.0, y=1.0, xanchor='right', yanchor='top',
showarrow=False,
font=dict(size=10),
align='left',
bgcolor='white',
bordercolor='#ccc',
borderwidth=1,
borderpad=8
)
return fig
def create_hierarchical_layout(G: nx.DiGraph, levels: Dict[str, int]) -> Dict[str, Tuple[float, float]]:
"""Create a hierarchical layout for the graph"""
pos = {}
# Group nodes by level
level_nodes = {}
for node, level in levels.items():
if level not in level_nodes:
level_nodes[level] = []
level_nodes[level].append(node)
# Assign positions
max_level = max(levels.values()) if levels else 0
for level, nodes in level_nodes.items():
y = 1.0 - (level / max(max_level, 1)) # Top to bottom
num_nodes = len(nodes)
for i, node in enumerate(nodes):
x = (i + 1) / (num_nodes + 1) # Spread evenly
pos[node] = (x, y)
return pos
def get_node_color(kind: str, status: str) -> str:
"""Get color for node based on kind and status"""
# Error status overrides kind color
if status == 'ERROR':
return '#DC143C' # Crimson
# Color by kind
color_map = {
'LLM': '#9B59B6', # Purple
'AGENT': '#1ABC9C', # Turquoise
'CHAIN': '#3498DB', # Light Blue
'TOOL': '#E67E22', # Orange
'RETRIEVER': '#F39C12', # Yellow-Orange
'EMBEDDING': '#8E44AD', # Dark Purple
'CLIENT': '#4169E1', # Royal Blue
'SERVER': '#2E8B57', # Sea Green
'INTERNAL': '#95A5A6', # Gray
}
return color_map.get(kind, '#4682B4') # Steel Blue default
def shorten_label(text: str, max_length: int = 20) -> str:
"""Shorten label for display"""
if len(text) <= max_length:
return text
return text[:max_length-3] + '...'
def create_arrow_annotation(x0: float, y0: float, x1: float, y1: float) -> go.Scatter:
"""Create an arrow annotation between two points"""
# Calculate arrow position (70% along the line, closer to end)
arrow_x = x0 + 0.7 * (x1 - x0)
arrow_y = y0 + 0.7 * (y1 - y0)
# Calculate angle for arrow direction
import math
angle = math.atan2(y1 - y0, x1 - x0)
# Create arrow head (larger and more visible)
arrow_size = 0.03 # Increased from 0.02
arrow_dx = arrow_size * math.cos(angle + 2.8)
arrow_dy = arrow_size * math.sin(angle + 2.8)
arrow_trace = go.Scatter(
x=[arrow_x - arrow_dx, arrow_x, arrow_x + arrow_size * math.cos(angle - 2.8)],
y=[arrow_y - arrow_dy, arrow_y, arrow_y + arrow_size * math.sin(angle - 2.8)],
mode='lines',
line=dict(width=2, color='#555'), # Match edge color
fill='toself',
fillcolor='#555', # Darker fill color
hoverinfo='none',
showlegend=False
)
return arrow_trace
def create_legend_items() -> str:
"""Create HTML legend for node types"""
legend = "<b>Node Types:</b><br>"
legend += "π£ LLM Call<br>"
legend += "π Tool Call<br>"
legend += "π΅ Chain/Agent<br>"
legend += "βͺ Other<br>"
legend += "π΄ Error"
return legend
|