File size: 11,266 Bytes
fae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ddbf0ce
fae4e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
"""
MCP Client for connecting to TraceMind-mcp-server
Uses MCP protocol over HTTP to call remote MCP tools
"""

import os
import asyncio
from typing import Optional, Dict, Any, List
from mcp import ClientSession, StdioServerParameters
from mcp.client.sse import sse_client
import aiohttp


class MCPClient:
    """Client for interacting with TraceMind MCP Server"""

    def __init__(self, server_url: Optional[str] = None):
        """
        Initialize MCP Client

        Args:
            server_url: URL of the TraceMind-mcp-server endpoint
                       If None, uses MCP_SERVER_URL from environment
        """
        self.server_url = server_url or os.getenv(
            'MCP_SERVER_URL',
            'https://mcp-1st-birthday-tracemind-mcp-server.hf.space/gradio_api/mcp/'
        )
        self.session: Optional[ClientSession] = None
        self._initialized = False

    async def initialize(self):
        """Initialize connection to MCP server"""
        if self._initialized:
            return

        try:
            # Connect to SSE endpoint
            async with sse_client(self.server_url) as (read, write):
                async with ClientSession(read, write) as session:
                    self.session = session
                    await session.initialize()
                    self._initialized = True

                    # List available tools for verification
                    tools_result = await session.list_tools()
                    print(f"βœ… Connected to TraceMind MCP Server at {self.server_url}")
                    print(f"πŸ“Š Available tools: {len(tools_result.tools)}")
                    for tool in tools_result.tools:
                        print(f"  - {tool.name}: {tool.description}")

        except Exception as e:
            print(f"❌ Failed to connect to MCP server: {e}")
            raise

    async def analyze_leaderboard(
        self,
        leaderboard_repo: str = "kshitijthakkar/smoltrace-leaderboard",
        metric_focus: str = "overall",
        time_range: str = "last_week",
        top_n: int = 5,
        hf_token: Optional[str] = None,
        gemini_api_key: Optional[str] = None
    ) -> str:
        """
        Call the analyze_leaderboard tool on MCP server

        Args:
            leaderboard_repo: HuggingFace dataset repo for leaderboard
            metric_focus: Focus metric (overall, accuracy, cost, latency, co2)
            time_range: Time range filter (last_week, last_month, all_time)
            top_n: Number of top models to highlight
            hf_token: HuggingFace API token (optional if public dataset)
            gemini_api_key: Google Gemini API key (optional, server may have it)

        Returns:
            AI-generated analysis of the leaderboard
        """
        if not self._initialized:
            await self.initialize()

        try:
            # Build arguments
            args = {
                "leaderboard_repo": leaderboard_repo,
                "metric_focus": metric_focus,
                "time_range": time_range,
                "top_n": top_n
            }

            # Add optional tokens if provided
            if hf_token:
                args["hf_token"] = hf_token
            if gemini_api_key:
                args["gemini_api_key"] = gemini_api_key

            # Call MCP tool
            result = await self.session.call_tool("analyze_leaderboard", arguments=args)

            # Extract text from result
            if result.content and len(result.content) > 0:
                return result.content[0].text
            else:
                return "No analysis generated"

        except Exception as e:
            return f"❌ Error calling analyze_leaderboard: {str(e)}"

    async def debug_trace(
        self,
        trace_data: Dict[str, Any],
        question: str,
        metrics_data: Optional[Dict[str, Any]] = None,
        hf_token: Optional[str] = None,
        gemini_api_key: Optional[str] = None
    ) -> str:
        """
        Call the debug_trace tool on MCP server

        Args:
            trace_data: OpenTelemetry trace data (dict with spans)
            question: User question about the trace
            metrics_data: Optional GPU metrics data
            hf_token: HuggingFace API token
            gemini_api_key: Google Gemini API key

        Returns:
            AI-generated answer to the trace question
        """
        if not self._initialized:
            await self.initialize()

        try:
            args = {
                "trace_data": trace_data,
                "question": question
            }

            if metrics_data:
                args["metrics_data"] = metrics_data
            if hf_token:
                args["hf_token"] = hf_token
            if gemini_api_key:
                args["gemini_api_key"] = gemini_api_key

            result = await self.session.call_tool("debug_trace", arguments=args)

            if result.content and len(result.content) > 0:
                return result.content[0].text
            else:
                return "No answer generated"

        except Exception as e:
            return f"❌ Error calling debug_trace: {str(e)}"

    async def estimate_cost(
        self,
        model: str,
        agent_type: str = "both",
        num_tests: int = 100,
        hardware: Optional[str] = None,
        hf_token: Optional[str] = None,
        gemini_api_key: Optional[str] = None
    ) -> str:
        """
        Call the estimate_cost tool on MCP server

        Args:
            model: Model name (e.g., 'openai/gpt-4', 'meta-llama/Llama-3.1-8B')
            agent_type: Agent type (tool, code, both)
            num_tests: Number of tests to run
            hardware: Hardware type (cpu, gpu_a10, gpu_h200)
            hf_token: HuggingFace API token
            gemini_api_key: Google Gemini API key

        Returns:
            Cost estimation with breakdown
        """
        if not self._initialized:
            await self.initialize()

        try:
            args = {
                "model": model,
                "agent_type": agent_type,
                "num_tests": num_tests
            }

            if hardware:
                args["hardware"] = hardware
            if hf_token:
                args["hf_token"] = hf_token
            if gemini_api_key:
                args["gemini_api_key"] = gemini_api_key

            result = await self.session.call_tool("estimate_cost", arguments=args)

            if result.content and len(result.content) > 0:
                return result.content[0].text
            else:
                return "No estimation generated"

        except Exception as e:
            return f"❌ Error calling estimate_cost: {str(e)}"

    async def compare_runs(
        self,
        run_data_list: List[Dict[str, Any]],
        focus_metrics: Optional[List[str]] = None,
        hf_token: Optional[str] = None,
        gemini_api_key: Optional[str] = None
    ) -> str:
        """
        Call the compare_runs tool on MCP server

        Args:
            run_data_list: List of run data dicts from leaderboard
            focus_metrics: List of metrics to focus on
            hf_token: HuggingFace API token
            gemini_api_key: Google Gemini API key

        Returns:
            AI-generated comparison analysis
        """
        if not self._initialized:
            await self.initialize()

        try:
            args = {
                "run_data_list": run_data_list
            }

            if focus_metrics:
                args["focus_metrics"] = focus_metrics
            if hf_token:
                args["hf_token"] = hf_token
            if gemini_api_key:
                args["gemini_api_key"] = gemini_api_key

            result = await self.session.call_tool("compare_runs", arguments=args)

            if result.content and len(result.content) > 0:
                return result.content[0].text
            else:
                return "No comparison generated"

        except Exception as e:
            return f"❌ Error calling compare_runs: {str(e)}"

    async def analyze_results(
        self,
        results_data: List[Dict[str, Any]],
        analysis_focus: str = "optimization",
        hf_token: Optional[str] = None,
        gemini_api_key: Optional[str] = None
    ) -> str:
        """
        Call the analyze_results tool on MCP server

        Args:
            results_data: List of test case results
            analysis_focus: Focus area (optimization, failures, performance, cost)
            hf_token: HuggingFace API token
            gemini_api_key: Google Gemini API key

        Returns:
            AI-generated results analysis with recommendations
        """
        if not self._initialized:
            await self.initialize()

        try:
            args = {
                "results_data": results_data,
                "analysis_focus": analysis_focus
            }

            if hf_token:
                args["hf_token"] = hf_token
            if gemini_api_key:
                args["gemini_api_key"] = gemini_api_key

            result = await self.session.call_tool("analyze_results", arguments=args)

            if result.content and len(result.content) > 0:
                return result.content[0].text
            else:
                return "No analysis generated"

        except Exception as e:
            return f"❌ Error calling analyze_results: {str(e)}"

    async def get_dataset_info(
        self,
        dataset_repo: str,
        hf_token: Optional[str] = None,
        gemini_api_key: Optional[str] = None
    ) -> str:
        """
        Call the get_dataset tool on MCP server (resource)

        Args:
            dataset_repo: HuggingFace dataset repo
            hf_token: HuggingFace API token
            gemini_api_key: Google Gemini API key

        Returns:
            Dataset information and structure
        """
        if not self._initialized:
            await self.initialize()

        try:
            args = {
                "dataset_repo": dataset_repo
            }

            if hf_token:
                args["hf_token"] = hf_token
            if gemini_api_key:
                args["gemini_api_key"] = gemini_api_key

            result = await self.session.call_tool("get_dataset", arguments=args)

            if result.content and len(result.content) > 0:
                return result.content[0].text
            else:
                return "No dataset info generated"

        except Exception as e:
            return f"❌ Error calling get_dataset: {str(e)}"

    async def close(self):
        """Close the MCP client session"""
        if self.session:
            # Note: ClientSession doesn't have an explicit close method
            # The context manager handles cleanup
            self.session = None
            self._initialized = False


# Singleton instance for use across the app
_mcp_client_instance: Optional[MCPClient] = None


def get_mcp_client() -> MCPClient:
    """Get or create the global MCP client instance"""
    global _mcp_client_instance
    if _mcp_client_instance is None:
        _mcp_client_instance = MCPClient()
    return _mcp_client_instance