Spaces:
Running
Running
File size: 30,207 Bytes
942ce50 4dc8a59 942ce50 a910a1e 942ce50 fedc47d 942ce50 fedc47d 942ce50 fedc47d 942ce50 63f41a1 fedc47d 74a1fce fedc47d 63f41a1 fedc47d 63f41a1 942ce50 b20c328 942ce50 b20c328 942ce50 a910a1e 942ce50 a910a1e 942ce50 a910a1e 942ce50 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 |
"""
Screen 4: Trace Detail View
Shows detailed OpenTelemetry trace visualization
"""
import gradio as gr
import plotly.graph_objects as go
from plotly.subplots import make_subplots
from datetime import datetime
import pandas as pd
from typing import Optional, Callable, Dict, Any, List
from components.thought_graph import create_thought_graph
def create_trace_detail_screen(
trace_data: dict,
on_back: Optional[Callable] = None,
mcp_qa_enabled: bool = True
) -> gr.Blocks:
"""
Create the trace detail screen UI
Args:
trace_data: OpenTelemetry trace data
on_back: Callback for back button
mcp_qa_enabled: Enable MCP Q&A tool
Returns:
Gradio Blocks for trace detail screen
"""
with gr.Blocks() as trace_detail:
with gr.Row():
if on_back:
back_btn = gr.Button("⬅️ Back to Run Detail", variant="secondary", size="sm")
gr.Markdown(f"# 🔍 Trace Detail: {trace_data.get('trace_id', 'Unknown')}")
# Safely extract spans
spans = trace_data.get('spans', [])
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
# Trace metadata
with gr.Row():
gr.Markdown(f"""
**Trace ID:** `{trace_data.get('trace_id', 'N/A')}`
**Total Spans:** {len(spans)}
""")
# Tabs for different visualizations
with gr.Tabs() as tabs:
# Tab 1: Thought Graph (STAR FEATURE!)
with gr.Tab("🧠 Thought Graph"):
gr.Markdown("""
### Agent Reasoning Flow
This graph visualizes how your agent thinks - showing the flow of reasoning steps,
tool calls, and LLM interactions as a network.
**Node Colors:**
- 🟣 Purple: LLM reasoning steps
- 🟠 Orange: Tool calls
- 🔵 Blue: Chains/Agents
- 🔴 Red: Errors
""")
# Create and display thought graph
thought_graph_plot = gr.Plot(
value=create_thought_graph(spans, trace_data.get('trace_id', 'Unknown')),
label=""
)
# Tab 2: Execution Timeline (Waterfall)
with gr.Tab("⏱️ Execution Timeline"):
gr.Markdown("""
### Waterfall Chart
Timeline view showing when each span executed and for how long.
""")
# Span visualization
span_viz = gr.Plot(
value=create_span_visualization(spans, trace_data.get('trace_id', 'Unknown')),
label=""
)
# Tab 3: Span Details
with gr.Tab("📋 Span Details"):
gr.Markdown("""
### Detailed Span Information
Raw span data with attributes, status, and metadata.
""")
# Span details table
span_table = create_span_table(spans)
# MCP Q&A Tool (below tabs)
gr.Markdown("---")
if mcp_qa_enabled:
with gr.Accordion("🤖 Ask About This Trace", open=False):
question_input = gr.Textbox(
label="Question",
placeholder="e.g., Why was the tool called twice? What tool did the agent use first?",
lines=2,
info="Ask questions about this trace execution, tool usage, or agent behavior"
)
ask_btn = gr.Button("Ask", variant="primary")
answer_output = gr.Markdown("*Ask a question to get AI-powered insights*")
# Wire up MCP Q&A (placeholder for now)
ask_btn.click(
fn=lambda q: f"**Answer:** This is a placeholder. MCP integration coming soon.\n\n**Your question:** {q}",
inputs=[question_input],
outputs=[answer_output]
)
# Wire up events
if on_back:
back_btn.click(fn=on_back, inputs=[], outputs=[])
return trace_detail
def process_trace_data(spans: List[Dict[str, Any]]) -> List[Dict[str, Any]]:
"""Process trace spans for waterfall visualization"""
# Ensure spans is a list
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
if not spans:
return []
# Helper function to get timestamp from span (handles different field names)
def get_timestamp(span, field_name):
"""Get timestamp handling different OpenTelemetry field name variations"""
# Try different variations of field names
variations = [
field_name, # e.g., 'startTime'
field_name.lower(), # e.g., 'starttime'
field_name.replace('Time', 'TimeUnixNano'), # e.g., 'startTimeUnixNano'
field_name[0].lower() + field_name[1:], # e.g., 'startTime'
# Add snake_case variations (start_time, end_time)
field_name.replace('Time', '_time').lower(), # e.g., 'start_time'
field_name.replace('Time', '_time_unix_nano').lower(), # e.g., 'start_time_unix_nano'
]
for var in variations:
if var in span:
value = span[var]
# Handle both string and numeric timestamps
if isinstance(value, str):
return int(value)
return value
# If not found, return 0
return 0
# Calculate relative times
start_times = [get_timestamp(span, 'startTime') for span in spans]
min_start = min(start_times) if start_times else 0
max_start = max(start_times) if start_times else 0
# Check if we have any actual timing data
has_timing_data = min_start > 0 or max_start > 0
# Debug: Print first span's raw timestamps
if spans:
first_span = spans[0]
print(f"[DEBUG] First span raw data sample:")
print(f" startTime field: {first_span.get('startTime', 'NOT FOUND')}")
print(f" endTime field: {first_span.get('endTime', 'NOT FOUND')}")
print(f" startTimeUnixNano field: {first_span.get('startTimeUnixNano', 'NOT FOUND')}")
print(f" endTimeUnixNano field: {first_span.get('endTimeUnixNano', 'NOT FOUND')}")
print(f" HAS_TIMING_DATA: {has_timing_data}")
if 'attributes' in first_span:
attrs = first_span['attributes']
print(f" Sample attributes: {list(attrs.keys())[:5] if isinstance(attrs, dict) else 'N/A'}")
if isinstance(attrs, dict):
# Check for cost fields
cost_fields = [k for k in attrs.keys() if 'cost' in k.lower() or 'price' in k.lower()]
if cost_fields:
print(f" Cost-related fields found: {cost_fields}")
# Auto-detect timestamp unit based on magnitude
time_divisor = 1000000 # Default: assume nanoseconds, convert to milliseconds
if start_times and min_start > 0:
# If timestamp is > 1e15, it's likely nanoseconds
# If timestamp is > 1e12, it's likely microseconds
# If timestamp is > 1e9, it's likely milliseconds
# If timestamp is < 1e9, it's likely seconds
if min_start > 1e15:
time_divisor = 1000000 # nanoseconds to milliseconds
time_unit = "nanoseconds"
elif min_start > 1e12:
time_divisor = 1000 # microseconds to milliseconds
time_unit = "microseconds"
elif min_start > 1e9:
time_divisor = 1 # already in milliseconds
time_unit = "milliseconds"
else:
time_divisor = 0.001 # seconds to milliseconds
time_unit = "seconds"
print(f"[DEBUG] Auto-detected timestamp unit: {time_unit} (min_start={min_start}, divisor={time_divisor})")
processed_spans = []
for idx, span in enumerate(spans):
start_time = get_timestamp(span, 'startTime')
end_time = get_timestamp(span, 'endTime')
# Calculate relative start
relative_start = (start_time - min_start) / time_divisor if has_timing_data else 0
# Calculate duration - prefer duration_ms if available
if 'duration_ms' in span and span['duration_ms'] is not None:
actual_duration = float(span['duration_ms'])
else:
actual_duration = (end_time - start_time) / time_divisor
# Debug: Print first few durations
if idx < 3:
duration_source = 'duration_ms' if 'duration_ms' in span else 'calculated'
print(f"[DEBUG] Span {idx}: start={start_time}, end={end_time}, duration={actual_duration:.3f}ms ({duration_source})")
# Handle span ID variations
span_id = span.get('spanId') or span.get('span_id') or span.get('spanID') or f'span_{idx}'
parent_id = span.get('parentSpanId') or span.get('parent_span_id') or span.get('parentSpanID')
# Get span kind - check both top-level and OpenInference attributes
span_kind = span.get('kind', 'INTERNAL')
attributes = span.get('attributes', {})
# Check for OpenInference span kind in attributes
if isinstance(attributes, dict) and 'openinference.span.kind' in attributes:
openinference_kind = attributes.get('openinference.span.kind')
# Map OpenInference kinds to OpenTelemetry kinds for consistency
# OpenInference kinds: CHAIN, TOOL, LLM, RETRIEVER, EMBEDDING, AGENT, etc.
if openinference_kind:
span_kind = openinference_kind.upper()
# Extract token and cost information from attributes
token_info = {}
cost_info = {}
if isinstance(attributes, dict):
# Helper to safely extract numeric values
def safe_numeric(value):
"""Safely convert to numeric, return None if invalid"""
if value is None:
return None
try:
if isinstance(value, (int, float)):
return value
return float(value)
except (ValueError, TypeError):
return None
# Check for token usage (various formats)
prompt_tokens = None
completion_tokens = None
if 'gen_ai.usage.prompt_tokens' in attributes:
prompt_tokens = safe_numeric(attributes['gen_ai.usage.prompt_tokens'])
if 'gen_ai.usage.completion_tokens' in attributes:
completion_tokens = safe_numeric(attributes['gen_ai.usage.completion_tokens'])
if 'llm.token_count.prompt' in attributes and prompt_tokens is None:
prompt_tokens = safe_numeric(attributes['llm.token_count.prompt'])
if 'llm.token_count.completion' in attributes and completion_tokens is None:
completion_tokens = safe_numeric(attributes['llm.token_count.completion'])
# Store valid token counts
if prompt_tokens is not None:
token_info['prompt_tokens'] = int(prompt_tokens)
if completion_tokens is not None:
token_info['completion_tokens'] = int(completion_tokens)
# Calculate total tokens
if 'prompt_tokens' in token_info and 'completion_tokens' in token_info:
token_info['total_tokens'] = token_info['prompt_tokens'] + token_info['completion_tokens']
elif 'llm.usage.total_tokens' in attributes:
total = safe_numeric(attributes['llm.usage.total_tokens'])
if total is not None:
token_info['total_tokens'] = int(total)
# Check for cost information (various formats)
if 'gen_ai.usage.cost.total' in attributes:
cost = safe_numeric(attributes['gen_ai.usage.cost.total'])
if cost is not None:
cost_info['total_cost'] = cost
elif 'llm.usage.cost' in attributes:
cost = safe_numeric(attributes['llm.usage.cost'])
if cost is not None:
cost_info['total_cost'] = cost
# Debug: Print cost info for LLM spans
if idx < 2 and span_kind == 'LLM':
print(f"[DEBUG] LLM Span {idx} cost extraction:")
print(f" gen_ai.usage.cost.total: {attributes.get('gen_ai.usage.cost.total', 'NOT FOUND')}")
print(f" llm.usage.cost: {attributes.get('llm.usage.cost', 'NOT FOUND')}")
print(f" cost_info: {cost_info}")
# Store actual duration for tooltip, use minimum for visualization
display_duration = max(actual_duration, 0.1) # Minimum width for visibility
processed_spans.append({
'span_id': span_id,
'parent_id': parent_id,
'name': span.get('name', 'Unknown'),
'kind': span_kind,
'start_time': relative_start,
'duration': display_duration, # For bar width
'actual_duration': actual_duration, # For tooltip
'end_time': relative_start + actual_duration, # Use actual for end time
'attributes': attributes,
'status': span.get('status', {}).get('code', 'UNKNOWN'),
'tokens': token_info,
'cost': cost_info
})
print(f"[DEBUG] Total spans in input: {len(spans)}")
print(f"[DEBUG] Processed spans: {len(processed_spans)}")
# Debug: Show span kinds and statuses detected
span_kinds = {}
span_statuses = {}
durations = []
spans_with_tokens = 0
spans_with_cost = 0
for span in processed_spans:
kind = span['kind']
status = span['status']
span_kinds[kind] = span_kinds.get(kind, 0) + 1
span_statuses[status] = span_statuses.get(status, 0) + 1
durations.append(span['actual_duration'])
if span['tokens']:
spans_with_tokens += 1
if span['cost']:
spans_with_cost += 1
print(f"[DEBUG] Span kinds detected: {span_kinds}")
print(f"[DEBUG] Span statuses detected: {span_statuses}")
if durations:
print(f"[DEBUG] Duration range: {min(durations):.3f}ms - {max(durations):.3f}ms")
print(f"[DEBUG] Spans with token info: {spans_with_tokens}/{len(processed_spans)}")
print(f"[DEBUG] Spans with cost info: {spans_with_cost}/{len(processed_spans)}")
return processed_spans
def create_span_visualization(spans: List[Dict[str, Any]], trace_id: str = "Unknown") -> go.Figure:
"""Create an interactive Plotly waterfall visualization of spans"""
processed_spans = process_trace_data(spans)
print(f"[DEBUG] create_span_visualization - Received {len(spans)} spans")
print(f"[DEBUG] create_span_visualization - Processed {len(processed_spans)} spans")
if not processed_spans:
# Return empty figure with message
fig = go.Figure()
fig.add_annotation(
text="No spans to display",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=20)
)
return fig
# Sort spans by start time for better visualization
processed_spans.sort(key=lambda x: x['start_time'])
# Create unique labels for each span (include index to ensure uniqueness)
for idx, span in enumerate(processed_spans):
# Add span index to make labels unique
span['display_name'] = f"{span['name']} [{idx}]"
# Create colors based on span status and kind
colors = []
color_map = {} # Track which colors are assigned to which kinds
for span in processed_spans:
status = span['status']
kind = span['kind']
# Only show red for actual errors (ERROR status)
if status == 'ERROR':
color = '#DC143C' # Crimson for errors
else:
# Color by span kind (supports both OpenTelemetry and OpenInference)
if kind == 'SERVER':
color = '#2E8B57' # Sea Green
elif kind == 'CLIENT':
color = '#4169E1' # Royal Blue
elif kind == 'LLM':
color = '#9B59B6' # Purple for LLM calls
elif kind == 'TOOL':
color = '#E67E22' # Orange for Tool calls
elif kind == 'CHAIN':
color = '#3498DB' # Light Blue for Chains
elif kind == 'AGENT':
color = '#1ABC9C' # Turquoise for Agents
elif kind == 'RETRIEVER':
color = '#F39C12' # Yellow-Orange for Retrievers
elif kind == 'EMBEDDING':
color = '#8E44AD' # Dark Purple for Embeddings
else:
color = '#4682B4' # Steel Blue for INTERNAL/unknown
colors.append(color)
if kind not in color_map:
color_map[kind] = color
print(f"[DEBUG] Color assignments: {color_map}")
# Create the waterfall chart
fig = go.Figure()
# Prepare custom data for hover tooltips
customdata = []
for span in processed_spans:
# Build token info string
token_str = ""
if span['tokens']:
tokens = span['tokens']
if 'total_tokens' in tokens:
token_str = f"<br>Tokens: {tokens['total_tokens']}"
if 'prompt_tokens' in tokens and 'completion_tokens' in tokens:
token_str += f" (prompt: {tokens['prompt_tokens']}, completion: {tokens['completion_tokens']})"
elif 'prompt_tokens' in tokens or 'completion_tokens' in tokens:
parts = []
if 'prompt_tokens' in tokens:
parts.append(f"prompt: {tokens['prompt_tokens']}")
if 'completion_tokens' in tokens:
parts.append(f"completion: {tokens['completion_tokens']}")
token_str = f"<br>Tokens: {', '.join(parts)}"
# Build cost info string
cost_str = ""
if span['cost'] and 'total_cost' in span['cost']:
cost_str = f"<br>Cost: ${span['cost']['total_cost']:.6f}"
customdata.append([
span['name'],
span['kind'],
span['span_id'],
span['end_time'],
span['actual_duration'], # Show actual duration, not display duration
token_str,
cost_str
])
# Add bars for each span (use display_name for unique y-axis labels)
fig.add_trace(go.Bar(
y=[span['display_name'] for span in processed_spans],
x=[span['duration'] for span in processed_spans], # Display duration (min 0.1ms)
base=[span['start_time'] for span in processed_spans],
orientation='h',
marker_color=colors,
hovertemplate=(
"<b>%{customdata[0]}</b><br>" +
"Type: %{customdata[1]}<br>" +
"Span ID: %{customdata[2]}<br>" +
"Duration: %{customdata[4]:.3f} ms<br>" + # Actual duration with 3 decimal places
"Start: %{base:.2f} ms<br>" +
"End: %{customdata[3]:.2f} ms" +
"%{customdata[5]}" + # Token info (already formatted)
"%{customdata[6]}" + # Cost info (already formatted)
"<extra></extra>"
),
customdata=customdata,
name="Spans"
))
# Update layout for better visualization
fig.update_layout(
title={
'text': f"OpenTelemetry Trace: {trace_id}",
'x': 0.5,
'xanchor': 'center'
},
xaxis_title="Time (milliseconds)",
yaxis_title="Spans",
showlegend=False,
height=400 + len(processed_spans) * 30, # Dynamic height based on span count
bargap=0.2,
hovermode='closest'
)
return fig
def create_span_table(spans: List[Dict[str, Any]]) -> gr.JSON:
"""Create detailed span information display"""
# Ensure spans is a list
if hasattr(spans, 'tolist'):
spans = spans.tolist()
elif not isinstance(spans, list):
spans = list(spans) if spans is not None else []
# Helper function to get timestamp (same as in process_trace_data)
def get_timestamp(span, field_name):
variations = [
field_name,
field_name.lower(),
field_name.replace('Time', 'TimeUnixNano'),
field_name[0].lower() + field_name[1:],
]
for var in variations:
if var in span:
value = span[var]
if isinstance(value, str):
return int(value)
return value
return 0
# Simplify span data for display
simplified_spans = []
for span in spans:
start_time = get_timestamp(span, 'startTime')
end_time = get_timestamp(span, 'endTime')
duration_ms = (end_time - start_time) / 1000000 if (end_time and start_time) else 0
# Handle span ID variations
span_id = span.get('spanId') or span.get('span_id') or span.get('spanID') or 'N/A'
parent_id = span.get('parentSpanId') or span.get('parent_span_id') or span.get('parentSpanID') or 'root'
simplified_spans.append({
"Span ID": span_id,
"Parent": parent_id,
"Name": span.get('name', 'N/A'),
"Kind": span.get('kind', 'N/A'),
"Duration (ms)": round(duration_ms, 2),
"Attributes": span.get('attributes', {}),
"Status": span.get('status', {}).get('code', 'UNKNOWN')
})
return gr.JSON(value=simplified_spans, label="Span Details")
# GPU Metrics Visualization Functions
def extract_metrics_data(metrics_df):
"""
Extract and prepare GPU metrics data for visualization
Args:
metrics_df: DataFrame with flat metrics structure (from HuggingFace dataset)
Expected columns: timestamp, gpu_utilization_percent, gpu_memory_used_mib,
gpu_temperature_celsius, gpu_power_watts, co2_emissions_gco2e
Returns:
DataFrame ready for visualization
"""
if metrics_df is None or metrics_df.empty:
return pd.DataFrame()
# Make a copy to avoid modifying original
df = metrics_df.copy()
# Ensure timestamp is datetime
if 'timestamp' in df.columns:
if not pd.api.types.is_datetime64_any_dtype(df['timestamp']):
df['timestamp'] = pd.to_datetime(df['timestamp'])
# Sort by timestamp
df = df.sort_values('timestamp').reset_index(drop=True)
return df
def create_gpu_summary_cards(df):
"""
Create summary cards for GPU metrics
Args:
df: DataFrame with flat metrics structure (columns: gpu_utilization_percent, etc.)
Returns:
HTML string with summary cards
"""
if df is None or df.empty:
return "<div style='padding: 20px; text-align: center;'>⚠️ No GPU metrics available (expected for API models)</div>"
# Debug: Print DataFrame info
print(f"[DEBUG create_gpu_summary_cards] DataFrame shape: {df.shape}")
print(f"[DEBUG create_gpu_summary_cards] DataFrame columns: {list(df.columns)}")
if not df.empty:
print(f"[DEBUG create_gpu_summary_cards] First row sample: {df.iloc[0].to_dict()}")
print(f"[DEBUG create_gpu_summary_cards] Last row sample: {df.iloc[-1].to_dict()}")
# Use aggregate statistics (average/max) instead of just last row
# This is more representative of overall GPU performance
utilization = df['gpu_utilization_percent'].mean() if 'gpu_utilization_percent' in df.columns else 0
memory_used = df['gpu_memory_used_mib'].max() if 'gpu_memory_used_mib' in df.columns else 0
temperature = df['gpu_temperature_celsius'].max() if 'gpu_temperature_celsius' in df.columns else 0
# CO2 emissions - use max value (cumulative total)
co2_emissions = df['co2_emissions_gco2e'].max() if 'co2_emissions_gco2e' in df.columns else 0
power = df['gpu_power_watts'].mean() if 'gpu_power_watts' in df.columns else 0
# Get GPU name from first row (it's constant across all rows)
gpu_name = df['gpu_name'].iloc[0] if 'gpu_name' in df.columns and not df.empty else 'Unknown GPU'
print(f"[DEBUG create_gpu_summary_cards] Aggregated values - util: {utilization:.2f}, mem: {memory_used:.2f}, temp: {temperature:.2f}, co2: {co2_emissions:.4f}, gpu_name: {gpu_name}")
# Get memory total from max value if available
memory_total = df['gpu_memory_total_mib'].max() if 'gpu_memory_total_mib' in df.columns else 0
memory_percent = (memory_used / memory_total * 100) if memory_total > 0 else 0
cards_html = f"""
<div style="display: grid; grid-template-columns: repeat(5, 1fr); gap: 15px; margin: 20px 0;">
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%); padding: 20px; border-radius: 10px; color: white; text-align: center;">
<h3 style="margin: 0 0 10px 0; font-size: 1em;">GPU Name</h3>
<h2 style="margin: 0; font-size: 1.2em;">{gpu_name}</h2>
</div>
<div style="background: linear-gradient(135deg, #fa709a 0%, #fee140 100%); padding: 20px; border-radius: 10px; color: white; text-align: center;">
<h3 style="margin: 0 0 10px 0; font-size: 1em;">GPU Utilization</h3>
<h2 style="margin: 0; font-size: 2em;">{utilization:.1f}%</h2>
</div>
<div style="background: linear-gradient(135deg, #f093fb 0%, #f5576c 100%); padding: 20px; border-radius: 10px; color: white; text-align: center;">
<h3 style="margin: 0 0 10px 0; font-size: 1em;">GPU Memory</h3>
<h2 style="margin: 0; font-size: 2em;">{memory_used:.0f} MiB</h2>
<p style="margin: 5px 0 0 0; font-size: 0.8em; opacity: 0.9;">{memory_percent:.1f}% of {memory_total:.0f} MiB</p>
</div>
<div style="background: linear-gradient(135deg, #4facfe 0%, #00f2fe 100%); padding: 20px; border-radius: 10px; color: white; text-align: center;">
<h3 style="margin: 0 0 10px 0; font-size: 1em;">GPU Temperature</h3>
<h2 style="margin: 0; font-size: 2em;">{temperature:.0f}°C</h2>
</div>
<div style="background: linear-gradient(135deg, #43e97b 0%, #38f9d7 100%); padding: 20px; border-radius: 10px; color: white; text-align: center;">
<h3 style="margin: 0 0 10px 0; font-size: 1em;">CO2 Emissions</h3>
<h2 style="margin: 0; font-size: 2em;">{co2_emissions:.4f} g</h2>
<p style="margin: 5px 0 0 0; font-size: 0.8em; opacity: 0.9;">Power: {power:.1f} W</p>
</div>
</div>
"""
return cards_html
def create_gpu_metrics_dashboard(metrics_df):
"""
Create a combined dashboard with GPU metric charts
Args:
metrics_df: DataFrame with flat metrics structure (from HuggingFace dataset)
Returns:
Plotly figure with GPU metrics time series
"""
if metrics_df is None or metrics_df.empty:
# Return empty figure with message
fig = go.Figure()
fig.add_annotation(
text="No GPU metrics available (expected for API models)",
xref="paper", yref="paper",
x=0.5, y=0.5, xanchor='center', yanchor='middle',
showarrow=False,
font=dict(size=16)
)
return fig
# Prepare data
df = extract_metrics_data(metrics_df)
if df.empty:
return None
# Create subplots for GPU metrics
# We'll show: Utilization, Memory, Temperature, Power, CO2, Power Cost
fig = make_subplots(
rows=3, cols=2,
subplot_titles=[
'GPU Utilization (%)',
'GPU Memory (MiB)',
'GPU Temperature (°C)',
'GPU Power (W)',
'CO2 Emissions (g)',
'Power Cost (USD)'
],
vertical_spacing=0.10,
horizontal_spacing=0.12,
specs=[[{}, {}], [{}, {}], [{}, {}]]
)
colors = ['#667eea', '#f093fb', '#4facfe', '#FFE66D', '#43e97b', '#FF6B6B']
# Define metrics to plot
metrics_config = [
('gpu_utilization_percent', 'GPU Utilization (%)', 1, 1, colors[0]),
('gpu_memory_used_mib', 'GPU Memory (MiB)', 1, 2, colors[1]),
('gpu_temperature_celsius', 'GPU Temperature (°C)', 2, 1, colors[2]),
('gpu_power_watts', 'GPU Power (W)', 2, 2, colors[3]),
('co2_emissions_gco2e', 'CO2 Emissions (g)', 3, 1, colors[4]),
('power_cost_usd', 'Power Cost (USD)', 3, 2, colors[5]),
]
for col_name, title, row, col, color in metrics_config:
if col_name in df.columns:
fig.add_trace(
go.Scatter(
x=df['timestamp'],
y=df[col_name],
mode='lines+markers',
name=title,
line=dict(color=color, width=3),
marker=dict(size=6, color=color),
hovertemplate=(
f"<b>{title}</b><br>" +
"Time: %{x}<br>" +
"Value: %{y:.2f}<br>" +
"<extra></extra>"
)
),
row=row, col=col
)
# Add memory total as a dashed line if available
if 'gpu_memory_total_mib' in df.columns:
total_memory = df['gpu_memory_total_mib'].iloc[0]
fig.add_hline(
y=total_memory,
line_dash="dash",
line_color="gray",
annotation_text=f"Total: {total_memory:.0f} MiB",
annotation_position="right",
row=1, col=2
)
fig.update_layout(
title_text="GPU Metrics Over Time",
height=900,
template="plotly_white",
showlegend=False,
hovermode='x unified'
)
# Update x-axes to show time format
fig.update_xaxes(tickformat='%H:%M:%S')
return fig
|