Spaces:
Running
Fix screen navigation: DrillDown to Run Detail switching now works
Browse filesMajor fixes to enable proper screen visibility switching:
- Moved event handlers (on_drilldown_select, go_back_to_leaderboard) to module-level before gr.Blocks() - handlers defined inside Blocks context had scoping issues
- Wrapped Sidebar and all screens in main_app_container Column (matching MockTraceMind structure)
- Downgraded from Gradio 6.0.0.dev4 to stable Gradio 5.49.1 - dev version had visibility update bugs causing handlers to fire multiple times and updates not applying
- Added theme configuration to gr.Blocks() (matching MockTraceMind pattern)
- Updated requirements.txt to gradio>=5.0.0
Screen navigation now works correctly:
- Click DrillDown row β leaderboard screen hides, run detail screen shows
- Single click (not multiple clicks required)
- Screens toggle properly instead of stacking
- README.md +4 -0
- app.py +590 -144
- requirements.txt +4 -2
|
@@ -5,12 +5,16 @@ colorFrom: indigo
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
|
|
|
| 8 |
app_file: app.py
|
|
|
|
| 9 |
pinned: false
|
| 10 |
tags:
|
| 11 |
- mcp-in-action-track-enterprise
|
| 12 |
- agent-evaluation
|
| 13 |
- mcp-client
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
# π TraceMind-AI
|
|
|
|
| 5 |
colorTo: purple
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 5.49.1
|
| 8 |
+
|
| 9 |
app_file: app.py
|
| 10 |
+
short_description: Enterprise-grade AI agent evaluation platform with MCP-powered intelligence and real-time leaderboards
|
| 11 |
pinned: false
|
| 12 |
tags:
|
| 13 |
- mcp-in-action-track-enterprise
|
| 14 |
- agent-evaluation
|
| 15 |
- mcp-client
|
| 16 |
+
- leaderboard
|
| 17 |
+
- gradio
|
| 18 |
---
|
| 19 |
|
| 20 |
# π TraceMind-AI
|
|
@@ -21,20 +21,32 @@ from components.analytics_charts import (
|
|
| 21 |
create_cost_efficiency_scatter
|
| 22 |
)
|
| 23 |
from components.report_cards import generate_leaderboard_summary_card
|
|
|
|
| 24 |
|
| 25 |
# Initialize data loader
|
| 26 |
data_loader = create_data_loader_from_env()
|
|
|
|
| 27 |
|
| 28 |
-
#
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
|
| 32 |
def load_leaderboard():
|
| 33 |
-
"""Load initial leaderboard data"""
|
| 34 |
global leaderboard_df_cache
|
| 35 |
|
| 36 |
-
|
| 37 |
-
|
| 38 |
|
| 39 |
html = generate_leaderboard_html(df)
|
| 40 |
|
|
@@ -44,6 +56,21 @@ def load_leaderboard():
|
|
| 44 |
return html, gr.update(choices=models), gr.update(choices=models)
|
| 45 |
|
| 46 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
def apply_filters(model, provider, sort_by_col):
|
| 48 |
"""Apply filters and sorting to leaderboard"""
|
| 49 |
global leaderboard_df_cache
|
|
@@ -65,10 +92,13 @@ def apply_filters(model, provider, sort_by_col):
|
|
| 65 |
|
| 66 |
def load_drilldown(agent_type, provider):
|
| 67 |
"""Load drilldown data with filters"""
|
|
|
|
|
|
|
| 68 |
try:
|
| 69 |
df = data_loader.load_leaderboard()
|
| 70 |
|
| 71 |
if df.empty:
|
|
|
|
| 72 |
return pd.DataFrame()
|
| 73 |
|
| 74 |
if agent_type != "All" and 'agent_type' in df.columns:
|
|
@@ -76,7 +106,11 @@ def load_drilldown(agent_type, provider):
|
|
| 76 |
if provider != "All" and 'provider' in df.columns:
|
| 77 |
df = df[df['provider'] == provider]
|
| 78 |
|
| 79 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
desired_columns = [
|
| 81 |
'run_id', 'model', 'agent_type', 'provider',
|
| 82 |
'success_rate', 'total_tests', 'avg_duration_ms', 'total_cost_usd'
|
|
@@ -91,6 +125,7 @@ def load_drilldown(agent_type, provider):
|
|
| 91 |
|
| 92 |
display_df = df[available_columns].copy()
|
| 93 |
|
|
|
|
| 94 |
return display_df
|
| 95 |
except Exception as e:
|
| 96 |
print(f"[ERROR] load_drilldown: {e}")
|
|
@@ -165,8 +200,365 @@ def generate_insights():
|
|
| 165 |
return f"## π Leaderboard Summary\n\nError generating insights: {str(e)}"
|
| 166 |
|
| 167 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
# Build Gradio app
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
# Top Banner
|
| 172 |
gr.HTML("""
|
|
@@ -188,190 +580,244 @@ with gr.Blocks(title="TraceMind-AI") as app:
|
|
| 188 |
</div>
|
| 189 |
""")
|
| 190 |
|
| 191 |
-
# Sidebar
|
| 192 |
-
with gr.
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
gr.
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
)
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
)
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
|
| 296 |
-
|
| 297 |
-
|
| 298 |
-
|
| 299 |
fn=load_leaderboard,
|
| 300 |
outputs=[leaderboard_by_model, model_filter, sidebar_model_filter]
|
| 301 |
-
|
| 302 |
|
| 303 |
-
|
| 304 |
fn=load_trends,
|
| 305 |
outputs=[trends_plot]
|
| 306 |
-
|
| 307 |
|
| 308 |
-
|
| 309 |
-
|
| 310 |
fn=load_drilldown,
|
| 311 |
inputs=[drilldown_agent_type, drilldown_provider],
|
| 312 |
outputs=[leaderboard_table]
|
| 313 |
-
|
| 314 |
|
| 315 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 316 |
fn=apply_filters,
|
| 317 |
inputs=[model_filter, provider_filter, sort_by],
|
| 318 |
outputs=[leaderboard_by_model]
|
| 319 |
-
|
| 320 |
|
| 321 |
-
|
| 322 |
fn=load_drilldown,
|
| 323 |
inputs=[drilldown_agent_type, drilldown_provider],
|
| 324 |
outputs=[leaderboard_table]
|
| 325 |
-
|
| 326 |
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
|
| 331 |
|
| 332 |
-
|
| 333 |
fn=apply_sidebar_model_filter,
|
| 334 |
inputs=[sidebar_model_filter, sort_by],
|
| 335 |
outputs=[leaderboard_by_model, model_filter]
|
| 336 |
-
|
| 337 |
|
| 338 |
-
|
| 339 |
-
|
| 340 |
-
|
| 341 |
|
| 342 |
-
|
| 343 |
fn=apply_sidebar_agent_type_filter,
|
| 344 |
inputs=[sidebar_agent_type_filter],
|
| 345 |
outputs=[leaderboard_table, drilldown_agent_type]
|
| 346 |
-
|
| 347 |
|
| 348 |
-
|
| 349 |
fn=update_analytics,
|
| 350 |
inputs=[viz_type],
|
| 351 |
outputs=[analytics_chart]
|
| 352 |
-
|
| 353 |
|
| 354 |
-
|
| 355 |
fn=update_analytics,
|
| 356 |
inputs=[viz_type],
|
| 357 |
outputs=[analytics_chart]
|
| 358 |
-
|
| 359 |
|
| 360 |
-
|
| 361 |
fn=generate_card,
|
| 362 |
inputs=[top_n_slider],
|
| 363 |
outputs=[card_preview]
|
| 364 |
-
|
| 365 |
|
| 366 |
-
|
| 367 |
fn=generate_insights,
|
| 368 |
outputs=[mcp_insights]
|
| 369 |
-
|
| 370 |
|
| 371 |
-
|
| 372 |
fn=generate_insights,
|
| 373 |
outputs=[mcp_insights]
|
| 374 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 375 |
|
| 376 |
|
| 377 |
if __name__ == "__main__":
|
|
|
|
| 21 |
create_cost_efficiency_scatter
|
| 22 |
)
|
| 23 |
from components.report_cards import generate_leaderboard_summary_card
|
| 24 |
+
from utils.navigation import Navigator, Screen
|
| 25 |
|
| 26 |
# Initialize data loader
|
| 27 |
data_loader = create_data_loader_from_env()
|
| 28 |
+
navigator = Navigator()
|
| 29 |
|
| 30 |
+
# Pre-load and cache the leaderboard data before building UI
|
| 31 |
+
print("π₯ Pre-loading leaderboard data from HuggingFace...")
|
| 32 |
+
leaderboard_df_cache = data_loader.load_leaderboard()
|
| 33 |
+
print(f"β
Loaded {len(leaderboard_df_cache)} evaluation runs")
|
| 34 |
+
|
| 35 |
+
# Global state (already populated)
|
| 36 |
+
# leaderboard_df_cache is now set
|
| 37 |
+
|
| 38 |
+
# Additional global state for navigation
|
| 39 |
+
current_selected_run = None
|
| 40 |
+
current_selected_trace = None
|
| 41 |
+
current_drilldown_df = None # Store currently displayed drilldown data
|
| 42 |
|
| 43 |
|
| 44 |
def load_leaderboard():
|
| 45 |
+
"""Load initial leaderboard data from cache"""
|
| 46 |
global leaderboard_df_cache
|
| 47 |
|
| 48 |
+
# Use pre-cached data (already loaded before UI build)
|
| 49 |
+
df = leaderboard_df_cache.copy()
|
| 50 |
|
| 51 |
html = generate_leaderboard_html(df)
|
| 52 |
|
|
|
|
| 56 |
return html, gr.update(choices=models), gr.update(choices=models)
|
| 57 |
|
| 58 |
|
| 59 |
+
def refresh_leaderboard():
|
| 60 |
+
"""Refresh leaderboard data from source (for reload button)"""
|
| 61 |
+
global leaderboard_df_cache
|
| 62 |
+
|
| 63 |
+
print("π Refreshing leaderboard data...")
|
| 64 |
+
df = data_loader.refresh_leaderboard() # Clears cache and reloads
|
| 65 |
+
leaderboard_df_cache = df.copy()
|
| 66 |
+
print(f"β
Refreshed {len(df)} evaluation runs")
|
| 67 |
+
|
| 68 |
+
html = generate_leaderboard_html(df)
|
| 69 |
+
models = ["All Models"] + sorted(df['model'].unique().tolist())
|
| 70 |
+
|
| 71 |
+
return html, gr.update(choices=models), gr.update(choices=models)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
def apply_filters(model, provider, sort_by_col):
|
| 75 |
"""Apply filters and sorting to leaderboard"""
|
| 76 |
global leaderboard_df_cache
|
|
|
|
| 92 |
|
| 93 |
def load_drilldown(agent_type, provider):
|
| 94 |
"""Load drilldown data with filters"""
|
| 95 |
+
global current_drilldown_df
|
| 96 |
+
|
| 97 |
try:
|
| 98 |
df = data_loader.load_leaderboard()
|
| 99 |
|
| 100 |
if df.empty:
|
| 101 |
+
current_drilldown_df = pd.DataFrame()
|
| 102 |
return pd.DataFrame()
|
| 103 |
|
| 104 |
if agent_type != "All" and 'agent_type' in df.columns:
|
|
|
|
| 106 |
if provider != "All" and 'provider' in df.columns:
|
| 107 |
df = df[df['provider'] == provider]
|
| 108 |
|
| 109 |
+
# IMPORTANT: Store the FULL dataframe in global state (with ALL columns)
|
| 110 |
+
# This ensures the event handler has access to results_dataset, traces_dataset, etc.
|
| 111 |
+
current_drilldown_df = df.copy()
|
| 112 |
+
|
| 113 |
+
# Select only columns for DISPLAY
|
| 114 |
desired_columns = [
|
| 115 |
'run_id', 'model', 'agent_type', 'provider',
|
| 116 |
'success_rate', 'total_tests', 'avg_duration_ms', 'total_cost_usd'
|
|
|
|
| 125 |
|
| 126 |
display_df = df[available_columns].copy()
|
| 127 |
|
| 128 |
+
# Return ONLY display columns for the UI table
|
| 129 |
return display_df
|
| 130 |
except Exception as e:
|
| 131 |
print(f"[ERROR] load_drilldown: {e}")
|
|
|
|
| 200 |
return f"## π Leaderboard Summary\n\nError generating insights: {str(e)}"
|
| 201 |
|
| 202 |
|
| 203 |
+
def on_html_table_row_click(row_index_str):
|
| 204 |
+
"""Handle row click from HTML table via JavaScript (hidden textbox bridge)"""
|
| 205 |
+
global current_selected_run, leaderboard_df_cache
|
| 206 |
+
|
| 207 |
+
print(f"[DEBUG] on_html_table_row_click called with: '{row_index_str}'")
|
| 208 |
+
|
| 209 |
+
try:
|
| 210 |
+
# Parse row index from string
|
| 211 |
+
if not row_index_str or row_index_str == "" or row_index_str.strip() == "":
|
| 212 |
+
print("[DEBUG] Empty row index, ignoring")
|
| 213 |
+
return {
|
| 214 |
+
leaderboard_screen: gr.update(),
|
| 215 |
+
run_detail_screen: gr.update(),
|
| 216 |
+
run_metadata_html: gr.update(),
|
| 217 |
+
test_cases_table: gr.update(),
|
| 218 |
+
selected_row_index: gr.update(value="") # Clear textbox
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
selected_idx = int(row_index_str)
|
| 222 |
+
print(f"[DEBUG] Parsed row index: {selected_idx}")
|
| 223 |
+
|
| 224 |
+
# Get the full run data from cache
|
| 225 |
+
if leaderboard_df_cache is None or leaderboard_df_cache.empty:
|
| 226 |
+
print("[ERROR] Leaderboard cache is empty")
|
| 227 |
+
gr.Warning("Leaderboard data not loaded")
|
| 228 |
+
return {
|
| 229 |
+
leaderboard_screen: gr.update(),
|
| 230 |
+
run_detail_screen: gr.update(),
|
| 231 |
+
run_metadata_html: gr.update(),
|
| 232 |
+
test_cases_table: gr.update(),
|
| 233 |
+
selected_row_index: gr.update(value="") # Clear textbox
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
if selected_idx < 0 or selected_idx >= len(leaderboard_df_cache):
|
| 237 |
+
print(f"[ERROR] Invalid row index: {selected_idx}, cache size: {len(leaderboard_df_cache)}")
|
| 238 |
+
gr.Warning(f"Invalid row index: {selected_idx}")
|
| 239 |
+
return {
|
| 240 |
+
leaderboard_screen: gr.update(),
|
| 241 |
+
run_detail_screen: gr.update(),
|
| 242 |
+
run_metadata_html: gr.update(),
|
| 243 |
+
test_cases_table: gr.update(),
|
| 244 |
+
selected_row_index: gr.update(value="") # Clear textbox
|
| 245 |
+
}
|
| 246 |
+
|
| 247 |
+
run_data = leaderboard_df_cache.iloc[selected_idx].to_dict()
|
| 248 |
+
|
| 249 |
+
# Set global
|
| 250 |
+
current_selected_run = run_data
|
| 251 |
+
|
| 252 |
+
print(f"[DEBUG] Selected run from HTML table: {run_data.get('model', 'Unknown')} (row {selected_idx})")
|
| 253 |
+
|
| 254 |
+
# Load results for this run
|
| 255 |
+
results_dataset = run_data.get('results_dataset')
|
| 256 |
+
if not results_dataset:
|
| 257 |
+
gr.Warning("No results dataset found for this run")
|
| 258 |
+
return {
|
| 259 |
+
leaderboard_screen: gr.update(visible=True),
|
| 260 |
+
run_detail_screen: gr.update(visible=False),
|
| 261 |
+
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
|
| 262 |
+
test_cases_table: gr.update(value=pd.DataFrame()),
|
| 263 |
+
selected_row_index: gr.update(value="")
|
| 264 |
+
}
|
| 265 |
+
|
| 266 |
+
results_df = data_loader.load_results(results_dataset)
|
| 267 |
+
|
| 268 |
+
# Create metadata HTML
|
| 269 |
+
metadata_html = f"""
|
| 270 |
+
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 271 |
+
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
|
| 272 |
+
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
|
| 273 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
|
| 274 |
+
<div>
|
| 275 |
+
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
|
| 276 |
+
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
|
| 277 |
+
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
|
| 278 |
+
</div>
|
| 279 |
+
<div>
|
| 280 |
+
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
|
| 281 |
+
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
|
| 282 |
+
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
|
| 283 |
+
</div>
|
| 284 |
+
<div>
|
| 285 |
+
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
|
| 286 |
+
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
|
| 287 |
+
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
|
| 288 |
+
</div>
|
| 289 |
+
</div>
|
| 290 |
+
</div>
|
| 291 |
+
"""
|
| 292 |
+
|
| 293 |
+
# Format results for display
|
| 294 |
+
display_df = results_df.copy()
|
| 295 |
+
|
| 296 |
+
# Select and format columns if they exist
|
| 297 |
+
display_columns = []
|
| 298 |
+
if 'task_id' in display_df.columns:
|
| 299 |
+
display_columns.append('task_id')
|
| 300 |
+
if 'success' in display_df.columns:
|
| 301 |
+
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
|
| 302 |
+
display_columns.append('success')
|
| 303 |
+
if 'tool_called' in display_df.columns:
|
| 304 |
+
display_columns.append('tool_called')
|
| 305 |
+
if 'execution_time_ms' in display_df.columns:
|
| 306 |
+
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
|
| 307 |
+
display_columns.append('execution_time_ms')
|
| 308 |
+
if 'total_tokens' in display_df.columns:
|
| 309 |
+
display_columns.append('total_tokens')
|
| 310 |
+
if 'cost_usd' in display_df.columns:
|
| 311 |
+
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
|
| 312 |
+
display_columns.append('cost_usd')
|
| 313 |
+
if 'trace_id' in display_df.columns:
|
| 314 |
+
display_columns.append('trace_id')
|
| 315 |
+
|
| 316 |
+
if display_columns:
|
| 317 |
+
display_df = display_df[display_columns]
|
| 318 |
+
|
| 319 |
+
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
|
| 320 |
+
|
| 321 |
+
return {
|
| 322 |
+
# Hide leaderboard, show run detail
|
| 323 |
+
leaderboard_screen: gr.update(visible=False),
|
| 324 |
+
run_detail_screen: gr.update(visible=True),
|
| 325 |
+
run_metadata_html: gr.update(value=metadata_html),
|
| 326 |
+
test_cases_table: gr.update(value=display_df),
|
| 327 |
+
selected_row_index: gr.update(value="") # Clear textbox
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
except Exception as e:
|
| 331 |
+
print(f"[ERROR] Handling HTML table row click: {e}")
|
| 332 |
+
import traceback
|
| 333 |
+
traceback.print_exc()
|
| 334 |
+
gr.Warning(f"Error loading run details: {str(e)}")
|
| 335 |
+
return {
|
| 336 |
+
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
|
| 337 |
+
run_detail_screen: gr.update(visible=False),
|
| 338 |
+
run_metadata_html: gr.update(),
|
| 339 |
+
test_cases_table: gr.update(),
|
| 340 |
+
selected_row_index: gr.update(value="") # Clear textbox
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
|
| 344 |
+
def load_run_detail(run_id):
|
| 345 |
+
"""Load run detail data including results dataset"""
|
| 346 |
+
global current_selected_run, leaderboard_df_cache
|
| 347 |
+
|
| 348 |
+
try:
|
| 349 |
+
# Find run in cache
|
| 350 |
+
df = leaderboard_df_cache
|
| 351 |
+
run_data = df[df['run_id'] == run_id].iloc[0].to_dict()
|
| 352 |
+
current_selected_run = run_data
|
| 353 |
+
|
| 354 |
+
# Load results dataset
|
| 355 |
+
results_dataset = run_data.get('results_dataset')
|
| 356 |
+
if not results_dataset:
|
| 357 |
+
return pd.DataFrame(), f"# Error\n\nNo results dataset found for this run", ""
|
| 358 |
+
|
| 359 |
+
results_df = data_loader.load_results(results_dataset)
|
| 360 |
+
|
| 361 |
+
# Create metadata HTML
|
| 362 |
+
metadata_html = f"""
|
| 363 |
+
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 364 |
+
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
|
| 365 |
+
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
|
| 366 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
|
| 367 |
+
<div>
|
| 368 |
+
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
|
| 369 |
+
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
|
| 370 |
+
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
|
| 371 |
+
</div>
|
| 372 |
+
<div>
|
| 373 |
+
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
|
| 374 |
+
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
|
| 375 |
+
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
|
| 376 |
+
</div>
|
| 377 |
+
<div>
|
| 378 |
+
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
|
| 379 |
+
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
|
| 380 |
+
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
|
| 381 |
+
</div>
|
| 382 |
+
</div>
|
| 383 |
+
</div>
|
| 384 |
+
"""
|
| 385 |
+
|
| 386 |
+
# Format results for display
|
| 387 |
+
display_df = results_df.copy()
|
| 388 |
+
|
| 389 |
+
# Select and format columns if they exist
|
| 390 |
+
display_columns = []
|
| 391 |
+
if 'task_id' in display_df.columns:
|
| 392 |
+
display_columns.append('task_id')
|
| 393 |
+
if 'success' in display_df.columns:
|
| 394 |
+
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
|
| 395 |
+
display_columns.append('success')
|
| 396 |
+
if 'tool_called' in display_df.columns:
|
| 397 |
+
display_columns.append('tool_called')
|
| 398 |
+
if 'execution_time_ms' in display_df.columns:
|
| 399 |
+
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
|
| 400 |
+
display_columns.append('execution_time_ms')
|
| 401 |
+
if 'total_tokens' in display_df.columns:
|
| 402 |
+
display_columns.append('total_tokens')
|
| 403 |
+
if 'cost_usd' in display_df.columns:
|
| 404 |
+
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
|
| 405 |
+
display_columns.append('cost_usd')
|
| 406 |
+
if 'trace_id' in display_df.columns:
|
| 407 |
+
display_columns.append('trace_id')
|
| 408 |
+
|
| 409 |
+
if display_columns:
|
| 410 |
+
display_df = display_df[display_columns]
|
| 411 |
+
|
| 412 |
+
return display_df, metadata_html, run_data.get('run_id', '')
|
| 413 |
+
|
| 414 |
+
except Exception as e:
|
| 415 |
+
print(f"[ERROR] load_run_detail: {e}")
|
| 416 |
+
import traceback
|
| 417 |
+
traceback.print_exc()
|
| 418 |
+
return pd.DataFrame(), f"# Error\n\nError loading run detail: {str(e)}", ""
|
| 419 |
+
|
| 420 |
+
|
| 421 |
+
|
| 422 |
+
# Screen 3 (Run Detail) event handlers
|
| 423 |
+
def on_drilldown_select(evt: gr.SelectData, df):
|
| 424 |
+
"""Handle row selection from DrillDown table - EXACT COPY from MockTraceMind"""
|
| 425 |
+
global current_selected_run, current_drilldown_df
|
| 426 |
+
|
| 427 |
+
try:
|
| 428 |
+
# Get selected run - use currently displayed dataframe (filtered/sorted)
|
| 429 |
+
selected_idx = evt.index[0]
|
| 430 |
+
|
| 431 |
+
# Get the full run data from the displayed dataframe
|
| 432 |
+
# This ensures we get the correct row even after filtering/sorting
|
| 433 |
+
if current_drilldown_df is not None and not current_drilldown_df.empty:
|
| 434 |
+
if selected_idx < len(current_drilldown_df):
|
| 435 |
+
run_data = current_drilldown_df.iloc[selected_idx].to_dict()
|
| 436 |
+
else:
|
| 437 |
+
gr.Warning(f"Invalid row selection: index {selected_idx} out of bounds")
|
| 438 |
+
return {}
|
| 439 |
+
else:
|
| 440 |
+
gr.Warning("Leaderboard data not available")
|
| 441 |
+
return {}
|
| 442 |
+
|
| 443 |
+
# IMPORTANT: Set global FIRST before any operations that might fail
|
| 444 |
+
current_selected_run = run_data
|
| 445 |
+
|
| 446 |
+
print(f"[DEBUG] Selected run: {run_data.get('model', 'Unknown')} (run_id: {run_data.get('run_id', 'N/A')[:8]}...)")
|
| 447 |
+
|
| 448 |
+
# Load results for this run
|
| 449 |
+
results_dataset = run_data.get('results_dataset')
|
| 450 |
+
if not results_dataset:
|
| 451 |
+
gr.Warning("No results dataset found for this run")
|
| 452 |
+
return {
|
| 453 |
+
leaderboard_screen: gr.update(visible=True),
|
| 454 |
+
run_detail_screen: gr.update(visible=False),
|
| 455 |
+
run_metadata_html: gr.update(value="<h3>No results dataset found</h3>"),
|
| 456 |
+
test_cases_table: gr.update(value=pd.DataFrame())
|
| 457 |
+
}
|
| 458 |
+
|
| 459 |
+
results_df = data_loader.load_results(results_dataset)
|
| 460 |
+
|
| 461 |
+
# Create metadata HTML
|
| 462 |
+
metadata_html = f"""
|
| 463 |
+
<div style="background: linear-gradient(135deg, #667eea 0%, #764ba2 100%);
|
| 464 |
+
padding: 20px; border-radius: 10px; color: white; margin-bottom: 20px;">
|
| 465 |
+
<h2 style="margin: 0 0 10px 0;">π Run Detail: {run_data.get('model', 'Unknown')}</h2>
|
| 466 |
+
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 20px; margin-top: 15px;">
|
| 467 |
+
<div>
|
| 468 |
+
<strong>Agent Type:</strong> {run_data.get('agent_type', 'N/A')}<br>
|
| 469 |
+
<strong>Provider:</strong> {run_data.get('provider', 'N/A')}<br>
|
| 470 |
+
<strong>Success Rate:</strong> {run_data.get('success_rate', 0):.1f}%
|
| 471 |
+
</div>
|
| 472 |
+
<div>
|
| 473 |
+
<strong>Total Tests:</strong> {run_data.get('total_tests', 0)}<br>
|
| 474 |
+
<strong>Successful:</strong> {run_data.get('successful_tests', 0)}<br>
|
| 475 |
+
<strong>Failed:</strong> {run_data.get('failed_tests', 0)}
|
| 476 |
+
</div>
|
| 477 |
+
<div>
|
| 478 |
+
<strong>Total Cost:</strong> ${run_data.get('total_cost_usd', 0):.4f}<br>
|
| 479 |
+
<strong>Avg Duration:</strong> {run_data.get('avg_duration_ms', 0):.0f}ms<br>
|
| 480 |
+
<strong>Submitted By:</strong> {run_data.get('submitted_by', 'Unknown')}
|
| 481 |
+
</div>
|
| 482 |
+
</div>
|
| 483 |
+
</div>
|
| 484 |
+
"""
|
| 485 |
+
|
| 486 |
+
# Format results for display
|
| 487 |
+
display_df = results_df.copy()
|
| 488 |
+
|
| 489 |
+
# Select and format columns if they exist
|
| 490 |
+
display_columns = []
|
| 491 |
+
if 'task_id' in display_df.columns:
|
| 492 |
+
display_columns.append('task_id')
|
| 493 |
+
if 'success' in display_df.columns:
|
| 494 |
+
display_df['success'] = display_df['success'].apply(lambda x: "β
" if x else "β")
|
| 495 |
+
display_columns.append('success')
|
| 496 |
+
if 'tool_called' in display_df.columns:
|
| 497 |
+
display_columns.append('tool_called')
|
| 498 |
+
if 'execution_time_ms' in display_df.columns:
|
| 499 |
+
display_df['execution_time_ms'] = display_df['execution_time_ms'].apply(lambda x: f"{x:.0f}ms")
|
| 500 |
+
display_columns.append('execution_time_ms')
|
| 501 |
+
if 'total_tokens' in display_df.columns:
|
| 502 |
+
display_columns.append('total_tokens')
|
| 503 |
+
if 'cost_usd' in display_df.columns:
|
| 504 |
+
display_df['cost_usd'] = display_df['cost_usd'].apply(lambda x: f"${x:.4f}")
|
| 505 |
+
display_columns.append('cost_usd')
|
| 506 |
+
if 'trace_id' in display_df.columns:
|
| 507 |
+
display_columns.append('trace_id')
|
| 508 |
+
|
| 509 |
+
if display_columns:
|
| 510 |
+
display_df = display_df[display_columns]
|
| 511 |
+
|
| 512 |
+
print(f"[DEBUG] Successfully loaded run detail for: {run_data.get('model', 'Unknown')}")
|
| 513 |
+
|
| 514 |
+
return {
|
| 515 |
+
# Hide leaderboard, show run detail
|
| 516 |
+
leaderboard_screen: gr.update(visible=False),
|
| 517 |
+
run_detail_screen: gr.update(visible=True),
|
| 518 |
+
run_metadata_html: gr.update(value=metadata_html),
|
| 519 |
+
test_cases_table: gr.update(value=display_df)
|
| 520 |
+
}
|
| 521 |
+
|
| 522 |
+
except Exception as e:
|
| 523 |
+
print(f"[ERROR] Loading run details: {e}")
|
| 524 |
+
import traceback
|
| 525 |
+
traceback.print_exc()
|
| 526 |
+
gr.Warning(f"Error loading run details: {e}")
|
| 527 |
+
|
| 528 |
+
# Return updates for all output components to avoid Gradio error
|
| 529 |
+
return {
|
| 530 |
+
leaderboard_screen: gr.update(visible=True), # Stay on leaderboard
|
| 531 |
+
run_detail_screen: gr.update(visible=False),
|
| 532 |
+
run_metadata_html: gr.update(value="<h3>Error loading run detail</h3>"),
|
| 533 |
+
test_cases_table: gr.update(value=pd.DataFrame())
|
| 534 |
+
}
|
| 535 |
+
|
| 536 |
+
|
| 537 |
+
|
| 538 |
+
def go_back_to_leaderboard():
|
| 539 |
+
"""Navigate back to leaderboard screen"""
|
| 540 |
+
return {
|
| 541 |
+
leaderboard_screen: gr.update(visible=True),
|
| 542 |
+
run_detail_screen: gr.update(visible=False)
|
| 543 |
+
}
|
| 544 |
+
|
| 545 |
+
|
| 546 |
# Build Gradio app
|
| 547 |
+
# Theme configuration (like MockTraceMind)
|
| 548 |
+
theme = gr.themes.Base(
|
| 549 |
+
primary_hue="indigo",
|
| 550 |
+
secondary_hue="purple",
|
| 551 |
+
neutral_hue="slate",
|
| 552 |
+
font=gr.themes.GoogleFont("Inter"),
|
| 553 |
+
).set(
|
| 554 |
+
body_background_fill="*neutral_50",
|
| 555 |
+
body_background_fill_dark="*neutral_900",
|
| 556 |
+
button_primary_background_fill="*primary_500",
|
| 557 |
+
button_primary_background_fill_hover="*primary_600",
|
| 558 |
+
button_primary_text_color="white",
|
| 559 |
+
)
|
| 560 |
+
|
| 561 |
+
with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
| 562 |
|
| 563 |
# Top Banner
|
| 564 |
gr.HTML("""
|
|
|
|
| 580 |
</div>
|
| 581 |
""")
|
| 582 |
|
| 583 |
+
# Main app container (wraps Sidebar + all screens like MockTraceMind)
|
| 584 |
+
with gr.Column() as main_app_container:
|
| 585 |
+
|
| 586 |
+
|
| 587 |
+
# Sidebar Navigation
|
| 588 |
+
with gr.Sidebar():
|
| 589 |
+
gr.Markdown("## π§ TraceMind")
|
| 590 |
+
gr.Markdown("*Navigation & Controls*")
|
| 591 |
+
|
| 592 |
+
gr.Markdown("---")
|
| 593 |
+
|
| 594 |
+
# Navigation section
|
| 595 |
+
gr.Markdown("### π§ Navigation")
|
| 596 |
+
|
| 597 |
+
# Navigation buttons
|
| 598 |
+
leaderboard_nav_btn = gr.Button("π Leaderboard", variant="primary", size="lg")
|
| 599 |
+
compare_nav_btn = gr.Button("βοΈ Compare", variant="secondary", size="lg")
|
| 600 |
+
docs_nav_btn = gr.Button("π Documentation", variant="secondary", size="lg")
|
| 601 |
+
|
| 602 |
+
gr.Markdown("---")
|
| 603 |
+
|
| 604 |
+
# Data Controls
|
| 605 |
+
gr.Markdown("### π Data Controls")
|
| 606 |
+
refresh_leaderboard_btn = gr.Button("π Refresh Data", variant="secondary", size="sm")
|
| 607 |
+
gr.Markdown("*Reload leaderboard from HuggingFace*")
|
| 608 |
+
|
| 609 |
+
gr.Markdown("---")
|
| 610 |
+
|
| 611 |
+
# Filters section
|
| 612 |
+
gr.Markdown("### π Global Filters")
|
| 613 |
+
|
| 614 |
+
sidebar_model_filter = gr.Dropdown(
|
| 615 |
+
choices=["All Models"],
|
| 616 |
+
value="All Models",
|
| 617 |
+
label="Model",
|
| 618 |
+
info="Filter evaluations by AI model"
|
| 619 |
+
)
|
| 620 |
+
|
| 621 |
+
sidebar_agent_type_filter = gr.Radio(
|
| 622 |
+
choices=["All", "tool", "code", "both"],
|
| 623 |
+
value="All",
|
| 624 |
+
label="Agent Type",
|
| 625 |
+
info="Tool: Function calling | Code: Code execution | Both: Hybrid"
|
| 626 |
+
)
|
| 627 |
+
|
| 628 |
+
# Main content area
|
| 629 |
+
# Screen 1: Main Leaderboard
|
| 630 |
+
with gr.Column(visible=True) as leaderboard_screen:
|
| 631 |
+
gr.Markdown("## π Agent Evaluation Leaderboard")
|
| 632 |
+
with gr.Tabs():
|
| 633 |
+
with gr.TabItem("π Leaderboard"):
|
| 634 |
+
# Filters
|
| 635 |
+
with gr.Row():
|
| 636 |
+
model_filter = gr.Dropdown(
|
| 637 |
+
choices=["All Models"],
|
| 638 |
+
value="All Models",
|
| 639 |
+
label="Filter by Model"
|
| 640 |
+
)
|
| 641 |
+
provider_filter = gr.Dropdown(
|
| 642 |
+
choices=["All", "litellm", "transformers"],
|
| 643 |
+
value="All",
|
| 644 |
+
label="Provider"
|
| 645 |
+
)
|
| 646 |
+
sort_by = gr.Dropdown(
|
| 647 |
+
choices=["success_rate", "total_cost_usd", "avg_duration_ms"],
|
| 648 |
+
value="success_rate",
|
| 649 |
+
label="Sort By"
|
| 650 |
+
)
|
| 651 |
+
|
| 652 |
+
apply_filters_btn = gr.Button("π Apply Filters")
|
| 653 |
+
|
| 654 |
+
# HTML table
|
| 655 |
+
leaderboard_by_model = gr.HTML()
|
| 656 |
+
|
| 657 |
+
with gr.TabItem("π DrillDown"):
|
| 658 |
+
with gr.Row():
|
| 659 |
+
drilldown_agent_type = gr.Radio(
|
| 660 |
+
choices=["All", "tool", "code", "both"],
|
| 661 |
+
value="All",
|
| 662 |
+
label="Agent Type"
|
| 663 |
+
)
|
| 664 |
+
drilldown_provider = gr.Dropdown(
|
| 665 |
+
choices=["All", "litellm", "transformers"],
|
| 666 |
+
value="All",
|
| 667 |
+
label="Provider"
|
| 668 |
+
)
|
| 669 |
+
|
| 670 |
+
apply_drilldown_btn = gr.Button("π Apply")
|
| 671 |
+
|
| 672 |
+
leaderboard_table = gr.Dataframe(
|
| 673 |
+
headers=["Run ID", "Model", "Agent Type", "Provider", "Success Rate", "Tests", "Duration", "Cost"],
|
| 674 |
+
interactive=False
|
| 675 |
)
|
| 676 |
+
|
| 677 |
+
with gr.TabItem("π Trends"):
|
| 678 |
+
trends_plot = gr.Plot()
|
| 679 |
+
|
| 680 |
+
with gr.TabItem("π Analytics"):
|
| 681 |
+
viz_type = gr.Radio(
|
| 682 |
+
choices=["π₯ Performance Heatmap", "β‘ Speed vs Accuracy", "π° Cost Efficiency"],
|
| 683 |
+
value="π₯ Performance Heatmap",
|
| 684 |
+
label="Select Visualization"
|
| 685 |
)
|
| 686 |
+
analytics_chart = gr.Plot()
|
| 687 |
+
|
| 688 |
+
with gr.TabItem("π₯ Summary Card"):
|
| 689 |
+
top_n_slider = gr.Slider(1, 5, 3, step=1, label="Top N Models")
|
| 690 |
+
generate_card_btn = gr.Button("π¨ Generate Card")
|
| 691 |
+
card_preview = gr.HTML()
|
| 692 |
+
|
| 693 |
+
with gr.TabItem("π€ AI Insights"):
|
| 694 |
+
regenerate_btn = gr.Button("π Regenerate")
|
| 695 |
+
mcp_insights = gr.Markdown("*Loading insights...*")
|
| 696 |
+
|
| 697 |
+
# Hidden textbox for row selection (JavaScript bridge)
|
| 698 |
+
selected_row_index = gr.Textbox(visible=False, elem_id="selected_row_index")
|
| 699 |
+
|
| 700 |
+
# Screen 3: Run Detail
|
| 701 |
+
with gr.Column(visible=False) as run_detail_screen:
|
| 702 |
+
# Navigation
|
| 703 |
+
with gr.Row():
|
| 704 |
+
back_to_leaderboard_btn = gr.Button("β¬
οΈ Back to Leaderboard", variant="secondary", size="sm")
|
| 705 |
+
|
| 706 |
+
# Run metadata display
|
| 707 |
+
run_metadata_html = gr.HTML()
|
| 708 |
+
|
| 709 |
+
# Test cases table
|
| 710 |
+
gr.Markdown("## π Test Cases")
|
| 711 |
+
test_cases_table = gr.Dataframe(
|
| 712 |
+
headers=["Task ID", "Status", "Tool", "Duration", "Tokens", "Cost", "Trace ID"],
|
| 713 |
+
interactive=False,
|
| 714 |
+
wrap=True
|
| 715 |
+
)
|
| 716 |
+
|
| 717 |
+
# Event handlers
|
| 718 |
+
app.load(
|
| 719 |
fn=load_leaderboard,
|
| 720 |
outputs=[leaderboard_by_model, model_filter, sidebar_model_filter]
|
| 721 |
+
)
|
| 722 |
|
| 723 |
+
app.load(
|
| 724 |
fn=load_trends,
|
| 725 |
outputs=[trends_plot]
|
| 726 |
+
)
|
| 727 |
|
| 728 |
+
# Load drilldown data on page load
|
| 729 |
+
app.load(
|
| 730 |
fn=load_drilldown,
|
| 731 |
inputs=[drilldown_agent_type, drilldown_provider],
|
| 732 |
outputs=[leaderboard_table]
|
| 733 |
+
)
|
| 734 |
|
| 735 |
+
# Refresh button handler
|
| 736 |
+
refresh_leaderboard_btn.click(
|
| 737 |
+
fn=refresh_leaderboard,
|
| 738 |
+
outputs=[leaderboard_by_model, model_filter, sidebar_model_filter]
|
| 739 |
+
)
|
| 740 |
+
|
| 741 |
+
apply_filters_btn.click(
|
| 742 |
fn=apply_filters,
|
| 743 |
inputs=[model_filter, provider_filter, sort_by],
|
| 744 |
outputs=[leaderboard_by_model]
|
| 745 |
+
)
|
| 746 |
|
| 747 |
+
apply_drilldown_btn.click(
|
| 748 |
fn=load_drilldown,
|
| 749 |
inputs=[drilldown_agent_type, drilldown_provider],
|
| 750 |
outputs=[leaderboard_table]
|
| 751 |
+
)
|
| 752 |
|
| 753 |
+
# Sidebar filter handlers
|
| 754 |
+
def apply_sidebar_model_filter(model, sort_by_col):
|
| 755 |
+
"""Apply sidebar model filter to leaderboard"""
|
| 756 |
+
return apply_filters(model, "All", sort_by_col), gr.update(value=model)
|
| 757 |
|
| 758 |
+
sidebar_model_filter.change(
|
| 759 |
fn=apply_sidebar_model_filter,
|
| 760 |
inputs=[sidebar_model_filter, sort_by],
|
| 761 |
outputs=[leaderboard_by_model, model_filter]
|
| 762 |
+
)
|
| 763 |
|
| 764 |
+
def apply_sidebar_agent_type_filter(agent_type):
|
| 765 |
+
"""Apply sidebar agent type filter to drilldown"""
|
| 766 |
+
return load_drilldown(agent_type, "All"), gr.update(value=agent_type)
|
| 767 |
|
| 768 |
+
sidebar_agent_type_filter.change(
|
| 769 |
fn=apply_sidebar_agent_type_filter,
|
| 770 |
inputs=[sidebar_agent_type_filter],
|
| 771 |
outputs=[leaderboard_table, drilldown_agent_type]
|
| 772 |
+
)
|
| 773 |
|
| 774 |
+
viz_type.change(
|
| 775 |
fn=update_analytics,
|
| 776 |
inputs=[viz_type],
|
| 777 |
outputs=[analytics_chart]
|
| 778 |
+
)
|
| 779 |
|
| 780 |
+
app.load(
|
| 781 |
fn=update_analytics,
|
| 782 |
inputs=[viz_type],
|
| 783 |
outputs=[analytics_chart]
|
| 784 |
+
)
|
| 785 |
|
| 786 |
+
generate_card_btn.click(
|
| 787 |
fn=generate_card,
|
| 788 |
inputs=[top_n_slider],
|
| 789 |
outputs=[card_preview]
|
| 790 |
+
)
|
| 791 |
|
| 792 |
+
app.load(
|
| 793 |
fn=generate_insights,
|
| 794 |
outputs=[mcp_insights]
|
| 795 |
+
)
|
| 796 |
|
| 797 |
+
regenerate_btn.click(
|
| 798 |
fn=generate_insights,
|
| 799 |
outputs=[mcp_insights]
|
| 800 |
+
)
|
| 801 |
+
|
| 802 |
+
|
| 803 |
+
leaderboard_table.select(
|
| 804 |
+
fn=on_drilldown_select,
|
| 805 |
+
inputs=[leaderboard_table], # Pass dataframe to handler (like MockTraceMind)
|
| 806 |
+
outputs=[leaderboard_screen, run_detail_screen, run_metadata_html, test_cases_table]
|
| 807 |
+
)
|
| 808 |
+
|
| 809 |
+
back_to_leaderboard_btn.click(
|
| 810 |
+
fn=go_back_to_leaderboard,
|
| 811 |
+
inputs=[],
|
| 812 |
+
outputs=[leaderboard_screen, run_detail_screen]
|
| 813 |
+
)
|
| 814 |
+
|
| 815 |
+
# HTML table row click handler (JavaScript bridge via hidden textbox)
|
| 816 |
+
selected_row_index.change(
|
| 817 |
+
fn=on_html_table_row_click,
|
| 818 |
+
inputs=[selected_row_index],
|
| 819 |
+
outputs=[leaderboard_screen, run_detail_screen, run_metadata_html, test_cases_table, selected_row_index]
|
| 820 |
+
)
|
| 821 |
|
| 822 |
|
| 823 |
if __name__ == "__main__":
|
|
@@ -1,9 +1,9 @@
|
|
| 1 |
# Gradio for UI
|
| 2 |
-
gradio
|
| 3 |
|
| 4 |
# HuggingFace for dataset loading
|
| 5 |
datasets>=2.14.0
|
| 6 |
-
huggingface-hub>=0.
|
| 7 |
|
| 8 |
# Data processing
|
| 9 |
pandas>=2.0.0
|
|
@@ -16,3 +16,5 @@ requests>=2.31.0
|
|
| 16 |
|
| 17 |
# Optional: For enhanced visualizations
|
| 18 |
plotly>=5.18.0
|
|
|
|
|
|
|
|
|
| 1 |
# Gradio for UI
|
| 2 |
+
gradio>=5.0.0
|
| 3 |
|
| 4 |
# HuggingFace for dataset loading
|
| 5 |
datasets>=2.14.0
|
| 6 |
+
huggingface-hub>=0.26.0
|
| 7 |
|
| 8 |
# Data processing
|
| 9 |
pandas>=2.0.0
|
|
|
|
| 16 |
|
| 17 |
# Optional: For enhanced visualizations
|
| 18 |
plotly>=5.18.0
|
| 19 |
+
matplotlib>=3.8.0
|
| 20 |
+
hf_xet
|