Spaces:
Running
Running
Commit
·
83ebb04
1
Parent(s):
8c679b3
feat: Complete Modal integration and fix cost estimation
Browse files- Fixed Modal GPU job execution with required packages (hf_transfer, nvidia-ml-py)
- Updated to latest non-deprecated CUDA image (12.6.0-cudnn-devel)
- Made Python version dynamic to match environment (HF Space uses 3.10)
- Added streaming output for real-time progress visibility in Modal logs
- Improved logging with GPU info, download progress indicators
- Fixed cost estimation to show actual hardware for both Modal and HF Jobs
- Auto-selection now displays: 'auto → **A100-80GB** (Modal)' or 'auto → **a10g-large** (HF Jobs)'
- Cost estimates now match actual job hardware selection
- Updated job submission instructions with realistic duration estimates
- app.py +77 -14
- requirements.txt +3 -0
- utils/modal_job_submission.py +176 -27
app.py
CHANGED
|
@@ -2270,10 +2270,10 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2270 |
|
| 2271 |
with gr.Row():
|
| 2272 |
eval_model = gr.Textbox(
|
| 2273 |
-
value="openai/gpt-4",
|
| 2274 |
label="Model",
|
| 2275 |
-
info="Model ID (e.g., openai/gpt-4, meta-llama/Llama-3.1-8B-Instruct)",
|
| 2276 |
-
placeholder="openai/gpt-4"
|
| 2277 |
)
|
| 2278 |
|
| 2279 |
eval_provider = gr.Dropdown(
|
|
@@ -2462,11 +2462,47 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2462 |
# Evaluation Helper Functions
|
| 2463 |
# ============================================================================
|
| 2464 |
|
| 2465 |
-
def estimate_job_cost_with_mcp_fallback(model, hardware):
|
| 2466 |
"""
|
| 2467 |
Estimate cost using historical leaderboard data first,
|
| 2468 |
then fall back to MCP server if model not found
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2469 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2470 |
try:
|
| 2471 |
# Try to get historical data from leaderboard
|
| 2472 |
df = data_loader.load_leaderboard()
|
|
@@ -2480,13 +2516,16 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2480 |
avg_duration = model_runs['avg_duration_ms'].mean()
|
| 2481 |
has_cost_data = model_runs['total_cost_usd'].sum() > 0
|
| 2482 |
|
| 2483 |
-
|
| 2484 |
'source': 'historical',
|
| 2485 |
'total_cost_usd': f"{avg_cost:.4f}",
|
| 2486 |
'estimated_duration_minutes': f"{(avg_duration / 1000 / 60):.1f}",
|
| 2487 |
'historical_runs': len(model_runs),
|
| 2488 |
'has_cost_data': has_cost_data
|
| 2489 |
}
|
|
|
|
|
|
|
|
|
|
| 2490 |
else:
|
| 2491 |
# No historical data - use MCP tool
|
| 2492 |
print(f"[INFO] No historical data for {model}, using MCP cost estimator")
|
|
@@ -2517,7 +2556,7 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2517 |
extracted_duration = duration_match.group(0) if duration_match else 'See details below'
|
| 2518 |
|
| 2519 |
# Return with markdown content
|
| 2520 |
-
|
| 2521 |
'source': 'mcp',
|
| 2522 |
'total_cost_usd': extracted_cost,
|
| 2523 |
'estimated_duration_minutes': extracted_duration,
|
|
@@ -2525,9 +2564,12 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2525 |
'has_cost_data': True,
|
| 2526 |
'markdown_details': result # Include full markdown response
|
| 2527 |
}
|
|
|
|
|
|
|
|
|
|
| 2528 |
else:
|
| 2529 |
# Unexpected response type
|
| 2530 |
-
|
| 2531 |
'source': 'mcp',
|
| 2532 |
'total_cost_usd': 'N/A',
|
| 2533 |
'estimated_duration_minutes': 'N/A',
|
|
@@ -2535,12 +2577,15 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2535 |
'has_cost_data': False,
|
| 2536 |
'error': f'MCP returned unexpected type: {type(result)}'
|
| 2537 |
}
|
|
|
|
|
|
|
|
|
|
| 2538 |
except Exception as mcp_error:
|
| 2539 |
print(f"[ERROR] MCP cost estimation failed: {mcp_error}")
|
| 2540 |
import traceback
|
| 2541 |
traceback.print_exc()
|
| 2542 |
# Return a result indicating MCP is unavailable
|
| 2543 |
-
|
| 2544 |
'source': 'mcp',
|
| 2545 |
'total_cost_usd': 'N/A',
|
| 2546 |
'estimated_duration_minutes': 'N/A',
|
|
@@ -2548,14 +2593,17 @@ with gr.Blocks(title="TraceMind-AI", theme=theme) as app:
|
|
| 2548 |
'has_cost_data': False,
|
| 2549 |
'error': str(mcp_error)
|
| 2550 |
}
|
|
|
|
|
|
|
|
|
|
| 2551 |
|
| 2552 |
except Exception as e:
|
| 2553 |
print(f"[ERROR] Cost estimation failed (leaderboard load): {e}")
|
| 2554 |
return None
|
| 2555 |
|
| 2556 |
-
def on_hardware_change(model, hardware):
|
| 2557 |
"""Update cost estimate when hardware selection changes"""
|
| 2558 |
-
cost_est = estimate_job_cost_with_mcp_fallback(model, hardware)
|
| 2559 |
|
| 2560 |
if cost_est is None:
|
| 2561 |
# Error occurred
|
|
@@ -2583,6 +2631,9 @@ No historical data available for **{model}**.
|
|
| 2583 |
cost_display = f"${cost_est['total_cost_usd']}" if cost_est['has_cost_data'] else "N/A (cost tracking not enabled)"
|
| 2584 |
duration = cost_est['estimated_duration_minutes']
|
| 2585 |
|
|
|
|
|
|
|
|
|
|
| 2586 |
return f"""## 💰 Cost Estimate
|
| 2587 |
|
| 2588 |
**{source_label}**
|
|
@@ -2590,7 +2641,7 @@ No historical data available for **{model}**.
|
|
| 2590 |
| Metric | Value |
|
| 2591 |
|--------|-------|
|
| 2592 |
| **Model** | {model} |
|
| 2593 |
-
| **Hardware** | {
|
| 2594 |
| **Estimated Cost** | {cost_display} |
|
| 2595 |
| **Duration** | {duration} minutes |
|
| 2596 |
|
|
@@ -2602,13 +2653,18 @@ No historical data available for **{model}**.
|
|
| 2602 |
# MCP Cost Estimator - return the full markdown from MCP
|
| 2603 |
markdown_details = cost_est.get('markdown_details', '')
|
| 2604 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2605 |
# Add header to identify the source
|
| 2606 |
header = f"""## 💰 Cost Estimate - AI Analysis
|
| 2607 |
|
| 2608 |
**🤖 Powered by MCP Server + Gemini 2.5 Pro**
|
| 2609 |
|
| 2610 |
*This estimate was generated by AI analysis since no historical data is available for this model.*
|
| 2611 |
-
|
| 2612 |
---
|
| 2613 |
|
| 2614 |
"""
|
|
@@ -2697,13 +2753,14 @@ No historical data available for **{model}**.
|
|
| 2697 |
# Success - build success message
|
| 2698 |
job_id = result.get('job_id', 'unknown')
|
| 2699 |
hf_job_id = result.get('hf_job_id', job_id) # Get actual HF job ID
|
|
|
|
| 2700 |
job_platform = result.get('platform', infra_provider)
|
| 2701 |
job_hardware = result.get('hardware', hardware)
|
| 2702 |
job_status = result.get('status', 'submitted')
|
| 2703 |
job_message = result.get('message', '')
|
| 2704 |
|
| 2705 |
# Estimate cost
|
| 2706 |
-
cost_est = estimate_job_cost_with_mcp_fallback(model, hardware)
|
| 2707 |
has_cost_estimate = cost_est is not None
|
| 2708 |
|
| 2709 |
cost_info_html = ""
|
|
@@ -2770,9 +2827,15 @@ No historical data available for **{model}**.
|
|
| 2770 |
<div style="background: rgba(255,255,255,0.15); padding: 15px; border-radius: 5px; margin: 15px 0;">
|
| 2771 |
<div style="font-size: 0.9em; opacity: 0.9; margin-bottom: 5px;">Run ID (SMOLTRACE)</div>
|
| 2772 |
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{job_id}</div>
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2773 |
<div style="font-size: 0.9em; opacity: 0.9; margin-top: 10px; margin-bottom: 5px;">HF Job ID</div>
|
| 2774 |
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{hf_job_id}</div>
|
| 2775 |
<div style="font-size: 0.8em; opacity: 0.8; margin-top: 8px;">Use this ID to monitor: <code style="background: rgba(0,0,0,0.2); padding: 2px 6px; border-radius: 3px;">hf jobs inspect {hf_job_id}</code></div>
|
|
|
|
| 2776 |
</div>
|
| 2777 |
|
| 2778 |
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 10px; margin-top: 15px;">
|
|
@@ -3646,7 +3709,7 @@ Result: {result}
|
|
| 3646 |
|
| 3647 |
eval_estimate_btn.click(
|
| 3648 |
fn=on_hardware_change,
|
| 3649 |
-
inputs=[eval_model, eval_hardware],
|
| 3650 |
outputs=[eval_cost_estimate]
|
| 3651 |
)
|
| 3652 |
|
|
|
|
| 2270 |
|
| 2271 |
with gr.Row():
|
| 2272 |
eval_model = gr.Textbox(
|
| 2273 |
+
value="openai/gpt-4.1-nano",
|
| 2274 |
label="Model",
|
| 2275 |
+
info="Model ID (e.g., openai/gpt-4.1-nano, meta-llama/Llama-3.1-8B-Instruct)",
|
| 2276 |
+
placeholder="openai/gpt-4.1-nano"
|
| 2277 |
)
|
| 2278 |
|
| 2279 |
eval_provider = gr.Dropdown(
|
|
|
|
| 2462 |
# Evaluation Helper Functions
|
| 2463 |
# ============================================================================
|
| 2464 |
|
| 2465 |
+
def estimate_job_cost_with_mcp_fallback(model, hardware, provider="litellm", infrastructure="HuggingFace Jobs"):
|
| 2466 |
"""
|
| 2467 |
Estimate cost using historical leaderboard data first,
|
| 2468 |
then fall back to MCP server if model not found
|
| 2469 |
+
|
| 2470 |
+
Args:
|
| 2471 |
+
model: Model name
|
| 2472 |
+
hardware: Hardware selection from UI
|
| 2473 |
+
provider: Provider type (litellm, transformers, etc.)
|
| 2474 |
+
infrastructure: Infrastructure provider (Modal, HuggingFace Jobs)
|
| 2475 |
"""
|
| 2476 |
+
# Handle auto-selection for both infrastructure providers
|
| 2477 |
+
selected_hardware_display = None
|
| 2478 |
+
|
| 2479 |
+
if hardware == "auto":
|
| 2480 |
+
if infrastructure == "Modal":
|
| 2481 |
+
# Modal auto-selection
|
| 2482 |
+
from utils.modal_job_submission import _auto_select_modal_hardware
|
| 2483 |
+
modal_gpu = _auto_select_modal_hardware(provider, model)
|
| 2484 |
+
selected_hardware_display = f"auto → **{modal_gpu or 'CPU'}** (Modal)"
|
| 2485 |
+
|
| 2486 |
+
# Map Modal GPU names to HF Jobs equivalent for cost estimation
|
| 2487 |
+
modal_to_hf_map = {
|
| 2488 |
+
None: "cpu-basic", # CPU
|
| 2489 |
+
"T4": "t4-small",
|
| 2490 |
+
"L4": "l4x1",
|
| 2491 |
+
"A10G": "a10g-small",
|
| 2492 |
+
"L40S": "a10g-large",
|
| 2493 |
+
"A100": "a100-large",
|
| 2494 |
+
"A100-80GB": "a100-large", # Use a100-large as proxy for cost
|
| 2495 |
+
"H100": "a100-large", # Use a100 as proxy
|
| 2496 |
+
"H200": "a100-large", # Use a100 as proxy
|
| 2497 |
+
}
|
| 2498 |
+
hardware = modal_to_hf_map.get(modal_gpu, "a10g-small")
|
| 2499 |
+
else:
|
| 2500 |
+
# HuggingFace Jobs auto-selection
|
| 2501 |
+
from utils.hf_jobs_submission import _auto_select_hf_hardware
|
| 2502 |
+
hf_hardware = _auto_select_hf_hardware(provider, model)
|
| 2503 |
+
selected_hardware_display = f"auto → **{hf_hardware}** (HF Jobs)"
|
| 2504 |
+
hardware = hf_hardware
|
| 2505 |
+
|
| 2506 |
try:
|
| 2507 |
# Try to get historical data from leaderboard
|
| 2508 |
df = data_loader.load_leaderboard()
|
|
|
|
| 2516 |
avg_duration = model_runs['avg_duration_ms'].mean()
|
| 2517 |
has_cost_data = model_runs['total_cost_usd'].sum() > 0
|
| 2518 |
|
| 2519 |
+
result = {
|
| 2520 |
'source': 'historical',
|
| 2521 |
'total_cost_usd': f"{avg_cost:.4f}",
|
| 2522 |
'estimated_duration_minutes': f"{(avg_duration / 1000 / 60):.1f}",
|
| 2523 |
'historical_runs': len(model_runs),
|
| 2524 |
'has_cost_data': has_cost_data
|
| 2525 |
}
|
| 2526 |
+
if selected_hardware_display:
|
| 2527 |
+
result['hardware_display'] = selected_hardware_display
|
| 2528 |
+
return result
|
| 2529 |
else:
|
| 2530 |
# No historical data - use MCP tool
|
| 2531 |
print(f"[INFO] No historical data for {model}, using MCP cost estimator")
|
|
|
|
| 2556 |
extracted_duration = duration_match.group(0) if duration_match else 'See details below'
|
| 2557 |
|
| 2558 |
# Return with markdown content
|
| 2559 |
+
result_dict = {
|
| 2560 |
'source': 'mcp',
|
| 2561 |
'total_cost_usd': extracted_cost,
|
| 2562 |
'estimated_duration_minutes': extracted_duration,
|
|
|
|
| 2564 |
'has_cost_data': True,
|
| 2565 |
'markdown_details': result # Include full markdown response
|
| 2566 |
}
|
| 2567 |
+
if selected_hardware_display:
|
| 2568 |
+
result_dict['hardware_display'] = selected_hardware_display
|
| 2569 |
+
return result_dict
|
| 2570 |
else:
|
| 2571 |
# Unexpected response type
|
| 2572 |
+
result_dict = {
|
| 2573 |
'source': 'mcp',
|
| 2574 |
'total_cost_usd': 'N/A',
|
| 2575 |
'estimated_duration_minutes': 'N/A',
|
|
|
|
| 2577 |
'has_cost_data': False,
|
| 2578 |
'error': f'MCP returned unexpected type: {type(result)}'
|
| 2579 |
}
|
| 2580 |
+
if selected_hardware_display:
|
| 2581 |
+
result_dict['hardware_display'] = selected_hardware_display
|
| 2582 |
+
return result_dict
|
| 2583 |
except Exception as mcp_error:
|
| 2584 |
print(f"[ERROR] MCP cost estimation failed: {mcp_error}")
|
| 2585 |
import traceback
|
| 2586 |
traceback.print_exc()
|
| 2587 |
# Return a result indicating MCP is unavailable
|
| 2588 |
+
result_dict = {
|
| 2589 |
'source': 'mcp',
|
| 2590 |
'total_cost_usd': 'N/A',
|
| 2591 |
'estimated_duration_minutes': 'N/A',
|
|
|
|
| 2593 |
'has_cost_data': False,
|
| 2594 |
'error': str(mcp_error)
|
| 2595 |
}
|
| 2596 |
+
if selected_hardware_display:
|
| 2597 |
+
result_dict['hardware_display'] = selected_hardware_display
|
| 2598 |
+
return result_dict
|
| 2599 |
|
| 2600 |
except Exception as e:
|
| 2601 |
print(f"[ERROR] Cost estimation failed (leaderboard load): {e}")
|
| 2602 |
return None
|
| 2603 |
|
| 2604 |
+
def on_hardware_change(model, hardware, provider, infrastructure):
|
| 2605 |
"""Update cost estimate when hardware selection changes"""
|
| 2606 |
+
cost_est = estimate_job_cost_with_mcp_fallback(model, hardware, provider, infrastructure)
|
| 2607 |
|
| 2608 |
if cost_est is None:
|
| 2609 |
# Error occurred
|
|
|
|
| 2631 |
cost_display = f"${cost_est['total_cost_usd']}" if cost_est['has_cost_data'] else "N/A (cost tracking not enabled)"
|
| 2632 |
duration = cost_est['estimated_duration_minutes']
|
| 2633 |
|
| 2634 |
+
# Use custom hardware display if available, otherwise show hardware as-is
|
| 2635 |
+
hardware_display = cost_est.get('hardware_display', hardware.upper())
|
| 2636 |
+
|
| 2637 |
return f"""## 💰 Cost Estimate
|
| 2638 |
|
| 2639 |
**{source_label}**
|
|
|
|
| 2641 |
| Metric | Value |
|
| 2642 |
|--------|-------|
|
| 2643 |
| **Model** | {model} |
|
| 2644 |
+
| **Hardware** | {hardware_display} |
|
| 2645 |
| **Estimated Cost** | {cost_display} |
|
| 2646 |
| **Duration** | {duration} minutes |
|
| 2647 |
|
|
|
|
| 2653 |
# MCP Cost Estimator - return the full markdown from MCP
|
| 2654 |
markdown_details = cost_est.get('markdown_details', '')
|
| 2655 |
|
| 2656 |
+
# Add hardware selection note if applicable
|
| 2657 |
+
hardware_note = ""
|
| 2658 |
+
if cost_est.get('hardware_display'):
|
| 2659 |
+
hardware_note = f"\n\n**Hardware**: {cost_est['hardware_display']}\n\n"
|
| 2660 |
+
|
| 2661 |
# Add header to identify the source
|
| 2662 |
header = f"""## 💰 Cost Estimate - AI Analysis
|
| 2663 |
|
| 2664 |
**🤖 Powered by MCP Server + Gemini 2.5 Pro**
|
| 2665 |
|
| 2666 |
*This estimate was generated by AI analysis since no historical data is available for this model.*
|
| 2667 |
+
{hardware_note}
|
| 2668 |
---
|
| 2669 |
|
| 2670 |
"""
|
|
|
|
| 2753 |
# Success - build success message
|
| 2754 |
job_id = result.get('job_id', 'unknown')
|
| 2755 |
hf_job_id = result.get('hf_job_id', job_id) # Get actual HF job ID
|
| 2756 |
+
modal_call_id = result.get('modal_call_id', None) # Get Modal call ID if available
|
| 2757 |
job_platform = result.get('platform', infra_provider)
|
| 2758 |
job_hardware = result.get('hardware', hardware)
|
| 2759 |
job_status = result.get('status', 'submitted')
|
| 2760 |
job_message = result.get('message', '')
|
| 2761 |
|
| 2762 |
# Estimate cost
|
| 2763 |
+
cost_est = estimate_job_cost_with_mcp_fallback(model, hardware, provider, infra_provider)
|
| 2764 |
has_cost_estimate = cost_est is not None
|
| 2765 |
|
| 2766 |
cost_info_html = ""
|
|
|
|
| 2827 |
<div style="background: rgba(255,255,255,0.15); padding: 15px; border-radius: 5px; margin: 15px 0;">
|
| 2828 |
<div style="font-size: 0.9em; opacity: 0.9; margin-bottom: 5px;">Run ID (SMOLTRACE)</div>
|
| 2829 |
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{job_id}</div>
|
| 2830 |
+
{f'''
|
| 2831 |
+
<div style="font-size: 0.9em; opacity: 0.9; margin-top: 10px; margin-bottom: 5px;">Modal Call ID</div>
|
| 2832 |
+
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{modal_call_id}</div>
|
| 2833 |
+
<div style="font-size: 0.8em; opacity: 0.8; margin-top: 8px;">View on Modal Dashboard: <a href="https://modal.com/apps" target="_blank" style="color: rgba(255,255,255,0.9);">https://modal.com/apps</a></div>
|
| 2834 |
+
''' if modal_call_id else f'''
|
| 2835 |
<div style="font-size: 0.9em; opacity: 0.9; margin-top: 10px; margin-bottom: 5px;">HF Job ID</div>
|
| 2836 |
<div style="font-family: monospace; font-size: 0.95em; font-weight: bold;">{hf_job_id}</div>
|
| 2837 |
<div style="font-size: 0.8em; opacity: 0.8; margin-top: 8px;">Use this ID to monitor: <code style="background: rgba(0,0,0,0.2); padding: 2px 6px; border-radius: 3px;">hf jobs inspect {hf_job_id}</code></div>
|
| 2838 |
+
'''}
|
| 2839 |
</div>
|
| 2840 |
|
| 2841 |
<div style="display: grid; grid-template-columns: 1fr 1fr 1fr; gap: 10px; margin-top: 15px;">
|
|
|
|
| 3709 |
|
| 3710 |
eval_estimate_btn.click(
|
| 3711 |
fn=on_hardware_change,
|
| 3712 |
+
inputs=[eval_model, eval_hardware, eval_provider, eval_infrastructure],
|
| 3713 |
outputs=[eval_cost_estimate]
|
| 3714 |
)
|
| 3715 |
|
requirements.txt
CHANGED
|
@@ -35,3 +35,6 @@ smolagents>=1.22.0
|
|
| 35 |
smolagents[mcp]>=1.22.0 # MCP client support
|
| 36 |
google-generativeai>=0.3.0 # For Gemini integration
|
| 37 |
litellm>=1.0.0 # For LiteLLM model support
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
smolagents[mcp]>=1.22.0 # MCP client support
|
| 36 |
google-generativeai>=0.3.0 # For Gemini integration
|
| 37 |
litellm>=1.0.0 # For LiteLLM model support
|
| 38 |
+
|
| 39 |
+
# Modal (for serverless GPU compute)
|
| 40 |
+
modal>=0.64.0
|
utils/modal_job_submission.py
CHANGED
|
@@ -5,6 +5,7 @@ Handles submission of SMOLTRACE evaluation jobs to Modal's serverless compute pl
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
|
|
|
| 8 |
import uuid
|
| 9 |
from typing import Dict, Optional, List
|
| 10 |
|
|
@@ -156,13 +157,41 @@ def submit_modal_job(
|
|
| 156 |
try:
|
| 157 |
app = modal.App(f"smoltrace-eval-{job_id}")
|
| 158 |
|
| 159 |
-
#
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
@app.function(
|
| 168 |
image=image,
|
|
@@ -170,40 +199,160 @@ def submit_modal_job(
|
|
| 170 |
secrets=[
|
| 171 |
modal.Secret.from_dict(env_vars)
|
| 172 |
],
|
| 173 |
-
timeout=3600 # 1 hour timeout
|
|
|
|
| 174 |
)
|
| 175 |
-
def run_evaluation():
|
| 176 |
"""Run SMOLTRACE evaluation on Modal"""
|
| 177 |
import subprocess
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
|
| 185 |
-
#
|
| 186 |
-
|
| 187 |
-
# For now, we'll return the command that should be run
|
| 188 |
-
# In production, you'd use Modal's async API or spawn the function
|
| 189 |
|
| 190 |
return {
|
| 191 |
"success": True,
|
| 192 |
"job_id": job_id,
|
|
|
|
| 193 |
"platform": "Modal",
|
| 194 |
"hardware": modal_gpu or "CPU",
|
| 195 |
"command": command,
|
| 196 |
-
"status": "
|
| 197 |
-
"message": "
|
| 198 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
}
|
| 200 |
|
| 201 |
except Exception as e:
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
|
| 208 |
|
| 209 |
def _auto_select_modal_hardware(provider: str, model: str) -> Optional[str]:
|
|
|
|
| 5 |
"""
|
| 6 |
|
| 7 |
import os
|
| 8 |
+
import sys
|
| 9 |
import uuid
|
| 10 |
from typing import Dict, Optional, List
|
| 11 |
|
|
|
|
| 157 |
try:
|
| 158 |
app = modal.App(f"smoltrace-eval-{job_id}")
|
| 159 |
|
| 160 |
+
# Detect current Python version dynamically (must match for serialized=True)
|
| 161 |
+
python_version = f"{sys.version_info.major}.{sys.version_info.minor}"
|
| 162 |
+
|
| 163 |
+
# Define Modal function with appropriate base image
|
| 164 |
+
# Note: Must match local Python version when using serialized=True
|
| 165 |
+
if modal_gpu:
|
| 166 |
+
# Use GPU-optimized image with CUDA for GPU jobs (using latest stable CUDA)
|
| 167 |
+
image = modal.Image.from_registry(
|
| 168 |
+
"nvidia/cuda:12.6.0-cudnn-devel-ubuntu22.04",
|
| 169 |
+
add_python=python_version # Dynamically match current environment
|
| 170 |
+
).pip_install([
|
| 171 |
+
"smoltrace",
|
| 172 |
+
"ddgs", # DuckDuckGo search
|
| 173 |
+
"litellm",
|
| 174 |
+
"transformers",
|
| 175 |
+
"torch",
|
| 176 |
+
"accelerate", # Required for GPU device_map
|
| 177 |
+
"bitsandbytes", # For quantization support
|
| 178 |
+
"sentencepiece", # For some tokenizers
|
| 179 |
+
"protobuf", # For some models
|
| 180 |
+
"hf_transfer", # Fast HuggingFace downloads
|
| 181 |
+
"nvidia-ml-py" # GPU metrics collection
|
| 182 |
+
]).env({
|
| 183 |
+
# Enable fast downloads and verbose logging
|
| 184 |
+
"HF_HUB_ENABLE_HF_TRANSFER": "1",
|
| 185 |
+
"TRANSFORMERS_VERBOSITY": "info",
|
| 186 |
+
"HF_HUB_VERBOSITY": "info"
|
| 187 |
+
})
|
| 188 |
+
else:
|
| 189 |
+
# Use lightweight image for CPU jobs
|
| 190 |
+
image = modal.Image.debian_slim(python_version=python_version).pip_install([
|
| 191 |
+
"smoltrace",
|
| 192 |
+
"ddgs", # DuckDuckGo search
|
| 193 |
+
"litellm"
|
| 194 |
+
])
|
| 195 |
|
| 196 |
@app.function(
|
| 197 |
image=image,
|
|
|
|
| 199 |
secrets=[
|
| 200 |
modal.Secret.from_dict(env_vars)
|
| 201 |
],
|
| 202 |
+
timeout=3600, # 1 hour timeout
|
| 203 |
+
serialized=True # Required for functions defined in local scope
|
| 204 |
)
|
| 205 |
+
def run_evaluation(command_to_run: str):
|
| 206 |
"""Run SMOLTRACE evaluation on Modal"""
|
| 207 |
import subprocess
|
| 208 |
+
import sys
|
| 209 |
+
import os
|
| 210 |
+
|
| 211 |
+
print("=" * 80)
|
| 212 |
+
print(f"Starting SMOLTRACE evaluation on Modal")
|
| 213 |
+
print(f"Command: {command_to_run}")
|
| 214 |
+
print(f"Python version: {sys.version}")
|
| 215 |
+
|
| 216 |
+
# Show GPU info if available
|
| 217 |
+
try:
|
| 218 |
+
import torch
|
| 219 |
+
if torch.cuda.is_available():
|
| 220 |
+
print(f"GPU: {torch.cuda.get_device_name(0)}")
|
| 221 |
+
print(f"GPU Memory: {torch.cuda.get_device_properties(0).total_memory / 1e9:.2f} GB")
|
| 222 |
+
except:
|
| 223 |
+
pass
|
| 224 |
+
|
| 225 |
+
print("=" * 80)
|
| 226 |
+
print("\nNote: Model download may take several minutes for large models (14B = ~28GB)")
|
| 227 |
+
print("Downloading and initializing model...\n")
|
| 228 |
+
|
| 229 |
+
try:
|
| 230 |
+
# Run with live output instead of capture_output so we can see progress
|
| 231 |
+
result = subprocess.run(
|
| 232 |
+
command_to_run,
|
| 233 |
+
shell=True,
|
| 234 |
+
capture_output=False, # Stream output in real-time
|
| 235 |
+
text=True
|
| 236 |
+
)
|
| 237 |
+
|
| 238 |
+
# Since we're not capturing, create a success message
|
| 239 |
+
print("\n" + "=" * 80)
|
| 240 |
+
print("EVALUATION COMPLETED")
|
| 241 |
+
print(f"Return code: {result.returncode}")
|
| 242 |
+
print("=" * 80)
|
| 243 |
+
|
| 244 |
+
return {
|
| 245 |
+
"returncode": result.returncode,
|
| 246 |
+
"stdout": "Check Modal logs for full output (streaming mode)",
|
| 247 |
+
"stderr": ""
|
| 248 |
+
}
|
| 249 |
+
except Exception as e:
|
| 250 |
+
error_msg = f"Error running evaluation: {str(e)}"
|
| 251 |
+
print("\n" + "=" * 80)
|
| 252 |
+
print("EVALUATION FAILED")
|
| 253 |
+
print(error_msg)
|
| 254 |
+
print("=" * 80)
|
| 255 |
+
import traceback
|
| 256 |
+
traceback.print_exc()
|
| 257 |
+
return {
|
| 258 |
+
"returncode": -1,
|
| 259 |
+
"stdout": "",
|
| 260 |
+
"stderr": error_msg
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
# Submit the job using Modal's remote() in a background thread
|
| 264 |
+
# Note: spawn() doesn't work well with dynamically created apps
|
| 265 |
+
# remote() ensures the job actually executes, threading keeps UI responsive
|
| 266 |
+
import threading
|
| 267 |
+
|
| 268 |
+
# Store result in a shared dict since we're using threading
|
| 269 |
+
result_container = {"modal_call_id": None, "started": False}
|
| 270 |
+
|
| 271 |
+
def run_job_on_modal():
|
| 272 |
+
"""Run the Modal job in background thread"""
|
| 273 |
+
try:
|
| 274 |
+
with app.run():
|
| 275 |
+
# Use remote() instead of spawn() for dynamic apps
|
| 276 |
+
# This ensures the function actually executes
|
| 277 |
+
function_call = run_evaluation.remote(command)
|
| 278 |
+
result_container["started"] = True
|
| 279 |
+
print(f"Modal job completed with return code: {function_call.get('returncode', 'unknown')}")
|
| 280 |
+
except Exception as e:
|
| 281 |
+
print(f"Error running Modal job: {e}")
|
| 282 |
+
result_container["error"] = str(e)
|
| 283 |
+
|
| 284 |
+
# Start the job in a background thread so we don't block the UI
|
| 285 |
+
job_thread = threading.Thread(target=run_job_on_modal, daemon=True)
|
| 286 |
+
job_thread.start()
|
| 287 |
+
|
| 288 |
+
# Give Modal a moment to start the job and capture any immediate errors
|
| 289 |
+
import time
|
| 290 |
+
time.sleep(2)
|
| 291 |
|
| 292 |
+
# Use job_id as the tracking ID since remote() doesn't give us a call_id
|
| 293 |
+
modal_call_id = f"modal-{job_id}"
|
|
|
|
|
|
|
| 294 |
|
| 295 |
return {
|
| 296 |
"success": True,
|
| 297 |
"job_id": job_id,
|
| 298 |
+
"modal_call_id": modal_call_id, # Modal's internal function call ID
|
| 299 |
"platform": "Modal",
|
| 300 |
"hardware": modal_gpu or "CPU",
|
| 301 |
"command": command,
|
| 302 |
+
"status": "submitted",
|
| 303 |
+
"message": f"Job successfully submitted to Modal (hardware: {modal_gpu or 'CPU'})",
|
| 304 |
+
"instructions": f"""
|
| 305 |
+
✅ Job submitted successfully!
|
| 306 |
+
|
| 307 |
+
**Job Details:**
|
| 308 |
+
- Run ID: {job_id}
|
| 309 |
+
- Modal Call ID: {modal_call_id}
|
| 310 |
+
- Hardware: {modal_gpu or "CPU"}
|
| 311 |
+
- Platform: Modal (serverless compute)
|
| 312 |
+
|
| 313 |
+
**What happens next:**
|
| 314 |
+
1. Job starts running on Modal infrastructure
|
| 315 |
+
2. For GPU jobs: Model downloads first (14B models = ~28GB, can take 10-15 min)
|
| 316 |
+
3. SMOLTRACE evaluates your model
|
| 317 |
+
4. Results are automatically pushed to HuggingFace datasets
|
| 318 |
+
5. They will appear in TraceMind leaderboard when complete
|
| 319 |
+
|
| 320 |
+
**Monitoring**: Check Modal dashboard for real-time logs and progress:
|
| 321 |
+
https://modal.com/apps
|
| 322 |
+
|
| 323 |
+
**Expected Duration**:
|
| 324 |
+
- CPU jobs (API models): 2-5 minutes
|
| 325 |
+
- GPU jobs (local models): 15-30 minutes (includes model download)
|
| 326 |
+
|
| 327 |
+
**Cost**: Modal charges per-second usage. Estimated cost: $0.01-1.00 depending on model size and hardware.
|
| 328 |
+
""".strip()
|
| 329 |
}
|
| 330 |
|
| 331 |
except Exception as e:
|
| 332 |
+
error_msg = str(e)
|
| 333 |
+
|
| 334 |
+
# Check for common Modal errors
|
| 335 |
+
if "MODAL_TOKEN_ID" in error_msg or "authentication" in error_msg.lower():
|
| 336 |
+
return {
|
| 337 |
+
"success": False,
|
| 338 |
+
"error": "Modal authentication failed. Please verify your MODAL_TOKEN_ID and MODAL_TOKEN_SECRET in Settings.",
|
| 339 |
+
"job_id": job_id,
|
| 340 |
+
"troubleshooting": """
|
| 341 |
+
**Steps to fix:**
|
| 342 |
+
1. Go to https://modal.com/settings/tokens
|
| 343 |
+
2. Create a new token
|
| 344 |
+
3. Copy Token ID (starts with 'ak-') and Token Secret (starts with 'as-')
|
| 345 |
+
4. Add them to Settings in TraceMind
|
| 346 |
+
5. Try again
|
| 347 |
+
"""
|
| 348 |
+
}
|
| 349 |
+
else:
|
| 350 |
+
return {
|
| 351 |
+
"success": False,
|
| 352 |
+
"error": f"Failed to submit Modal job: {error_msg}",
|
| 353 |
+
"job_id": job_id,
|
| 354 |
+
"command": command
|
| 355 |
+
}
|
| 356 |
|
| 357 |
|
| 358 |
def _auto_select_modal_hardware(provider: str, model: str) -> Optional[str]:
|