File size: 32,387 Bytes
adcd9ba 85f345d adcd9ba 80bb04a adcd9ba 85f345d adcd9ba 79b15fc adcd9ba 79b15fc adcd9ba 79b15fc adcd9ba 79b15fc adcd9ba 79b15fc adcd9ba 80bb04a adcd9ba |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 |
from gradio import ChatMessage
from langchain_mcp_adapters.client import MultiServerMCPClient
from langchain.agents import create_agent
from langgraph.checkpoint.memory import InMemorySaver
from langchain_core.tools import tool
import pandas as pd
from youtube_search import YoutubeSearch
import gradio as gr
import asyncio
import re
import uuid
import json
from pathlib import Path
from dtc_display import DTCDisplay
from tools import search_youtube_video, decode_vin, hex_to_decimal, calculate_obd_value, combine_bytes
from prompts import system_prompt
from hackathon_detail import create_hackathon_detail_tab
from demo_video import create_demo_video_tab
from mcp_server_detail import create_mcp_server_tab
# from langchain_anthropic import ChatAnthropic
# model = ChatAnthropic(model="claude-haiku-4-5-20251001", temperature=0, streaming=True) # streaming=True is required for token streaming
from langchain_nebius import ChatNebius
model = ChatNebius(
model="Qwen/Qwen3-Coder-480B-A35B-Instruct",
# model = "Qwen/Qwen3-235B-A22B-Instruct-2507",
# model="meta-llama/Llama-3.3-70B-Instruct", # Choose from available models
# model="deepseek-ai/DeepSeek-R1-0528", # Choose from available models
temperature=0,
top_p=0.95,
streaming=True,
)
# Global variables
agent = None
mcp_error = None
checkpointer = None
historic_data = None
dtc_component = None
async def setup_agent():
global agent, mcp_error, checkpointer
try:
client = MultiServerMCPClient(
{
"diagnostic": {
"transport": "streamable_http",
# "url": "http://192.168.10.69/mcp", # Actual physical dongle MCP server
"url": "https://castlebbs-elm327-simulator.hf.space/gradio_api/mcp/", # Simulator MCP server on gradio
"timeout": 20.0, # Increased timeout for multiple calls
}
}
)
tools = await client.get_tools()
print("Available MCP tools:", [tool.name for tool in tools])
# Add YouTube search tool to the tools list
all_tools = list(tools) + [search_youtube_video, decode_vin, hex_to_decimal, calculate_obd_value, combine_bytes]
# Create the checkpointer
checkpointer = InMemorySaver()
# Create the agent with the retrieved tools
agent = create_agent(
model=model,
system_prompt=system_prompt,
tools=all_tools,
checkpointer=checkpointer,
)
print("β
MCP server connected successfully")
return agent
except Exception as e:
mcp_error = str(e)
print(f"β οΈ Warning: Could not connect to MCP server: {e}")
print("The app will start but MCP tools will not be available.")
return None
# Try to setup agent, but don't fail if it doesn't work
try:
agent = asyncio.run(setup_agent())
except Exception as e:
print(f"Failed to initialize agent: {e}")
async def interact_with_langchain_agent(user_prompt, messages, session_id, historic_data_state, vin_data_state, dtc_data_state):
global agent, mcp_error
# Skip if input is empty or only whitespace
if not user_prompt or not user_prompt.strip():
yield messages, historic_data_state, vin_data_state, dtc_data_state
return
print("> ", user_prompt)
messages.append(ChatMessage(role="user", content=user_prompt))
yield messages, historic_data_state, vin_data_state, dtc_data_state
# Check if agent is available
if agent is None:
error_msg = f"β MCP server is not available. {mcp_error or 'Connection failed.'}\n\nPlease ensure MCP server is reachable and try again."
messages.append(ChatMessage(role="assistant", content=error_msg))
yield messages, historic_data_state, vin_data_state, dtc_data_state
return
# print("Agent is available, processing the request...")
try:
assistant_response = "" # Collect assistant's full response
current_message_index = None # Track which message we're streaming to
tool_call_tracker = {} # Track tool calls: {tool_call_id: message_index}
tool_args_accumulator = {} # NEW: Accumulate streaming tool arguments
current_tool_call_id = None # Track the active tool call being streamed
dtc_extracted = False # Track if we've already extracted DTC data
# Stream with messages mode for token-by-token streaming
async for message_chunk, metadata in agent.astream(
{"messages": [{"role": "user", "content": user_prompt}]},
{"configurable": {"thread_id": session_id}},
stream_mode="messages"
):
node = metadata.get("langgraph_node", "unknown")
# print(f"Token from node {node}: {message_chunk}")
# Only process chunks from the model node (AI responses)
if node == "model":
# Check if this is the last chunk in a tool call sequence
is_last_chunk = hasattr(message_chunk, "response_metadata") and message_chunk.response_metadata.get("finish_reason") == "tool_calls"
# Check if this is a tool call or text content
if hasattr(message_chunk, "tool_call_chunks") and message_chunk.tool_call_chunks:
# Handle tool call chunks
for tool_chunk in message_chunk.tool_call_chunks:
tool_call_id = tool_chunk.get("id")
tool_name = tool_chunk.get("name")
tool_args = tool_chunk.get("args")
# Determine active ID using pending key for chunks without ID
if not tool_call_id:
# No ID yet, use default key
active_id = "pending_tool_0"
else:
# We have an ID now - this is a new tool call
active_id = tool_call_id
# If this is a brand new tool call with a name, reset for fresh start
if tool_name and tool_call_id not in tool_call_tracker:
# Clear any stale pending data
if "pending_tool_0" in tool_args_accumulator:
del tool_args_accumulator["pending_tool_0"]
# Initialize fresh accumulator for this tool call
tool_args_accumulator[tool_call_id] = ""
current_tool_call_id = tool_call_id
# Migrate any pending args to the real ID
elif "pending_tool_0" in tool_args_accumulator:
if tool_call_id not in tool_args_accumulator:
tool_args_accumulator[tool_call_id] = ""
tool_args_accumulator[tool_call_id] = tool_args_accumulator["pending_tool_0"] + tool_args_accumulator.get(tool_call_id, "")
del tool_args_accumulator["pending_tool_0"]
current_tool_call_id = tool_call_id
# Initialize accumulator if needed
if active_id not in tool_args_accumulator:
tool_args_accumulator[active_id] = ""
# Accumulate arguments
if tool_args:
tool_args_accumulator[active_id] += tool_args
# Create message when we first see a tool call with name and ID
if tool_call_id and tool_name:
# Check if this is a reused ID (same ID appearing again)
if tool_call_id in tool_call_tracker:
# This ID was used before - check if previous call is complete
prev_msg_idx = tool_call_tracker[tool_call_id]
if prev_msg_idx < len(messages) and messages[prev_msg_idx].content:
# Previous call has results, this is a NEW call with reused ID
# Reset the accumulator and create a new message
tool_args_accumulator[tool_call_id] = ""
messages.append(ChatMessage(
role="assistant",
content="",
metadata={"title": f"βοΈ Calling {tool_name}...", "tool_id": tool_call_id, "tool_name": tool_name},
))
tool_call_tracker[tool_call_id] = len(messages) - 1
yield messages, historic_data_state, vin_data_state, dtc_data_state
else:
# Truly new tool call ID
messages.append(ChatMessage(
role="assistant",
content="",
metadata={"title": f"βοΈ Calling {tool_name}...", "tool_id": tool_call_id, "tool_name": tool_name},
))
tool_call_tracker[tool_call_id] = len(messages) - 1
yield messages, historic_data_state, vin_data_state, dtc_data_state
# Update the message as args stream in OR on the last chunk
# Check both active_id and current_tool_call_id in case pending args exist
target_id = active_id if active_id in tool_call_tracker else current_tool_call_id
if target_id and target_id in tool_call_tracker:
# Try to get args from either active_id or pending
accumulated_args = tool_args_accumulator.get(active_id, "") or tool_args_accumulator.get("pending_tool_0", "")
if accumulated_args:
try:
# Try to parse accumulated args
args_dict = json.loads(accumulated_args)
# Get the first parameter value (works for any parameter name)
param_value = "..."
if args_dict:
# Get the first non-empty value from the dict
param_value = next((str(v) for v in args_dict.values() if v), "...")
# Update the message title with the actual parameter value
msg_index = tool_call_tracker[target_id]
tool_name = messages[msg_index].metadata.get("tool_name", "")
messages[msg_index].metadata["title"] = f"βοΈ Calling {tool_name}: <b>{param_value}</b>"
yield messages, historic_data_state, vin_data_state, dtc_data_state
except json.JSONDecodeError:
# Args still streaming, don't update yet
pass
# Force update on the last chunk to ensure we catch the final args
if is_last_chunk and current_tool_call_id and current_tool_call_id in tool_call_tracker:
# Check both the tool ID accumulator and pending
accumulated_args = tool_args_accumulator.get(current_tool_call_id, "") or tool_args_accumulator.get("pending_tool_0", "")
if accumulated_args:
try:
args_dict = json.loads(accumulated_args)
param_value = "..."
if args_dict:
param_value = next((str(v) for v in args_dict.values() if v), "...")
msg_index = tool_call_tracker[current_tool_call_id]
tool_name = messages[msg_index].metadata.get("tool_name", "")
messages[msg_index].metadata["title"] = f"βοΈ Calling {tool_name}: <b>{param_value}</b>"
yield messages, historic_data_state, vin_data_state, dtc_data_state
except json.JSONDecodeError:
pass
elif hasattr(message_chunk, "content") and message_chunk.content:
# Handle text streaming token by token
text_content = message_chunk.content
if isinstance(text_content, str) and text_content:
# Accumulate the full response for DTC extraction
if current_message_index is None:
assistant_response = text_content
else:
assistant_response += text_content
# Check for complete DTC data block and extract it (only once)
if not dtc_extracted:
dtc_match = re.search(r'<DTC_DATA>\s*(\[.*?\])\s*</DTC_DATA>',
assistant_response, re.DOTALL)
if dtc_match:
try:
# Extract and parse the DTC JSON
dtc_json = json.loads(dtc_match.group(1))
dtc_data_state = dtc_json
dtc_extracted = True # Mark as extracted
print(f"β
Extracted DTC data from LLM response: {dtc_json}")
except json.JSONDecodeError as e:
print(f"β οΈ Could not parse DTC data from LLM response: {e}")
# Remove the DTC_DATA block from display text (only from accumulated response)
display_response = re.sub(r'<DTC_DATA>.*?</DTC_DATA>', '',
assistant_response, flags=re.DOTALL)
# Stream the token (calculate what to add by comparing with previous content)
if current_message_index is None:
# Start a new assistant message with clean content
messages.append(ChatMessage(role="assistant", content=display_response))
current_message_index = len(messages) - 1
else:
# Update the message with the clean accumulated content
messages[current_message_index].content = display_response
yield messages, historic_data_state, vin_data_state, dtc_data_state
elif isinstance(text_content, list):
# Handle content blocks
for block in text_content:
if isinstance(block, dict) and block.get("type") == "text":
text = block.get("text", "")
if text:
# Accumulate the full response for DTC extraction
assistant_response += text
# Check for complete DTC data block and extract it (only once)
if not dtc_extracted:
dtc_match = re.search(r'<DTC_DATA>\s*(\[.*?\])\s*</DTC_DATA>',
assistant_response, re.DOTALL)
if dtc_match:
try:
# Extract and parse the DTC JSON
dtc_json = json.loads(dtc_match.group(1))
dtc_data_state = dtc_json
dtc_extracted = True # Mark as extracted
print(f"β
Extracted DTC data from LLM response: {dtc_json}")
except json.JSONDecodeError as e:
print(f"β οΈ Could not parse DTC data from LLM response: {e}")
# Remove the DTC_DATA block from display (only from accumulated response)
display_response = re.sub(r'<DTC_DATA>.*?</DTC_DATA>', '',
assistant_response, flags=re.DOTALL)
if current_message_index is None:
messages.append(ChatMessage(role="assistant", content=display_response))
current_message_index = len(messages) - 1
else:
messages[current_message_index].content = display_response
yield messages, historic_data_state, vin_data_state, dtc_data_state
elif node == "tools":
# Reset current message index when we move to tool execution
current_message_index = None
# Handle tool outputs
if hasattr(message_chunk, "content"):
tool_output = message_chunk.content
tool_call_id = message_chunk.tool_call_id if hasattr(message_chunk, "tool_call_id") else None
# Decode escaped newlines for proper display
if isinstance(tool_output, str):
tool_output = tool_output.replace('\\n', '\n')
# Replace "?" with "NO DATA"
if tool_output.strip() == "?":
tool_output = "NO DATA"
# Update the corresponding tool call message
if tool_call_id and tool_call_id in tool_call_tracker:
msg_index = tool_call_tracker[tool_call_id]
# Check if this is historic data tool
tool_metadata = messages[msg_index].metadata or {}
tool_name = tool_metadata.get("tool_name", "")
# Check if toolname ends with "get_elm327_history"
if tool_name.endswith("get_elm327_history") and isinstance(tool_output, str):
try:
# Parse the JSON data
historic_data_state = json.loads(tool_output)
print(f"Captured historic data: {historic_data_state}")
except json.JSONDecodeError:
print(f"Could not parse historic data as JSON")
# Check if this is VIN decode tool
if tool_name == "decode_vin" and isinstance(tool_output, str):
# Store the VIN decode output
vin_data_state = tool_output
print(f"Captured VIN data: {vin_data_state}")
messages[msg_index].content = f"{tool_output}\n"
else:
# Fallback: add as new message
messages.append(ChatMessage(
role="assistant",
content=f"{tool_output}\n",
))
yield messages, historic_data_state, vin_data_state, dtc_data_state
except ExceptionGroup as eg:
# Handle Python 3.11+ ExceptionGroup from TaskGroup
error_details = []
for e in eg.exceptions:
error_details.append(f" - {type(e).__name__}: {str(e)}")
error_message = f"β Multiple errors occurred:\n" + "\n".join(error_details[:3]) # Show first 3
if len(eg.exceptions) > 3:
error_message += f"\n ... and {len(eg.exceptions) - 3} more"
error_message += "\n\nπ‘ This usually means the elm327 device is unreachable or timing out."
messages.append(ChatMessage(role="assistant", content=error_message))
yield messages, historic_data_state, vin_data_state, dtc_data_state
except Exception as e:
error_message = f"β Error: {type(e).__name__}: {str(e)}\n\nπ‘ Make sure MCP server is online and responding."
messages.append(ChatMessage(role="assistant", content=error_message))
print(f"Error during agent interaction: {e}")
yield messages, historic_data_state, vin_data_state, dtc_data_state
def clear_history():
global checkpointer
# Clear the checkpointer memory if it exists
if checkpointer is not None:
# InMemorySaver stores data in checkpointer.storage dict
checkpointer.storage.clear()
print("β
Checkpointer memory cleared")
# Return empty states for chatbot, historic_data, vin_data, dtc_data, plot, and vin_dataframe
empty_vin_df = pd.DataFrame({
'Property': ["NO DATA"],
'Value': ['']
})
return [], None, None, None, None, empty_vin_df, []
def update_vin_dataframe(vin_data_state):
"""Update the VIN dataframe from the state data."""
if not vin_data_state:
# Return empty dataframe with default structure
return pd.DataFrame({
'Property': [ "NO DATA" ],
'Value': [ '' ]
})
# Parse the VIN data (it comes as a formatted string from the tool)
# Extract property-value pairs from the string
df_data = {
'Property': [
'Make',
'Model',
'Model Year',
'Vehicle Type',
'Body Class',
'Manufacturer Name',
'Plant City',
'Plant State',
'Plant Country',
'Trim',
'Engine Number of Cylinders',
'Displacement (L)',
'Engine Model',
'Fuel Type - Primary',
'Fuel Type - Secondary',
'Electrification Level',
'Transmission Style',
'Drive Type',
'Number of Doors',
'Number of Seats',
'Gross Vehicle Weight Rating From',
'Error Code',
'Error Text'
],
'Value': [''] * 23
}
# Parse the VIN data string and populate values
for line in vin_data_state.split('\n'):
if ':' in line:
key, value = line.split(':', 1)
key = key.strip()
value = value.strip()
if key in df_data['Property']:
idx = df_data['Property'].index(key)
df_data['Value'][idx] = value
return pd.DataFrame(df_data)
#method to create a plot
def create_plot(data):
if data is None or len(data) == 0:
# print("No historic data to plot.")
return None
print("Creating plot with data:", data)
# Create DataFrame from actual historic data
df = pd.DataFrame(data)
# Create long format DataFrame with all three metrics
df_combined = pd.DataFrame({
'time': list(df['time']) + list(df['time']) + list(df['time']),
'value': list(df['rpm']) + list(df['speed']) + list(df['coolant_temp']),
'metric': ['RPM'] * len(df) + ['Speed'] * len(df) + ['Coolant Temp'] * len(df)
})
# plot = gr.LinePlot(
# value=df_combined,
# x="time",
# y="value",
# color="metric",
# x_title="Time (ms)",
# y_title="Value",
# title="Vehicle Telemetry",
# colors_in_legend=["RPM", "Speed", "Coolant Temp"],
# color_map={"RPM": "red", "Speed": "blue", "Coolant Temp": "green"}
# )
# return plot
return df_combined
def update_dtc(dtc_data):
if dtc_data is None or len(dtc_data) == 0:
# print("No DTC data to update.")
return []
print("Updating DTC component with data:", dtc_data)
return dtc_data
# Gradio UI setup
with gr.Blocks() as demo:
input = None
chatbot = None
submit_btn = None
clear_btn = None
examples = None
plot_output = None
vin_dataframe = None
# Create a unique session ID for each user session
session_id = gr.State(lambda: str(uuid.uuid4()))
historic_data_state = gr.State(None) # State to hold historic data
dtc_data_state = gr.State(None) # State to hold DTC data
vin_data_state = gr.State(None) # State to hold VIN decode data
with gr.Row(equal_height=True, elem_classes="vertical-center"):
gr.Image("mechanic_s.png", height=60, width=60, show_label=False, container=False, buttons=[""], scale=0, min_width=0, elem_classes="logo-image")
with gr.Column(scale=10, elem_classes="big-title"):
gr.Markdown("## Vehicle Diagnostic Assistant π π οΈ")
with gr.Row( elem_classes="ask-me"):
gr.Markdown("AI agent that connects to your car via an embedded MCP server to provide real-time diagnostics and insights.")
with gr.Tabs():
with gr.Tab("Main Dashboard"):
with gr.Row():
with gr.Column(scale=6, min_width=600):
with gr.Row():
chatbot = gr.Chatbot(
label="Diagnostic Agent",
avatar_images=(
None,
"mechanic_s.png",
),
height=400,
group_consecutive_messages=False,
buttons=[""],
)
with gr.Row():
input = gr.Textbox(
lines=1,
label="Ask a question",
placeholder="e.g., Can you check for any faults? What's the engine RPM?",
show_label=True,
buttons=[""],
)
with gr.Row():
submit_btn = gr.Button("Run", size="lg", variant="primary", elem_classes="button_color")
clear_btn = gr.Button("Clear History", size="lg", variant="secondary")
# Example questions
gr.Examples(
examples=[
["Can you see if there are any faults using OBD-II?"],
["What's the vehicle VIN?"],
["Check the engine RPM and speed"],
["Read the temperature sensor"],
["Get system information"],
["Get the last 10 historic data"],
],
inputs=input
)
with gr.Column(scale=4, min_width=400, elem_classes="scroll-column"):
with gr.Column(min_width=400): # Added extra Column for scroll
with gr.Row():
with gr.Column():
gr.Markdown("### π Historic Vehicle Data", elem_classes="section-title")
plot_output = gr.LinePlot(
value=None,
x="time",
y="value",
color="metric",
x_title="Time (ms)",
y_title="Value",
title="Vehicle Telemetry",
colors_in_legend=["RPM", "Speed", "Coolant Temp"],
color_map={"RPM": "red", "Speed": "blue", "Coolant Temp": "green"},
label="Vehicle Telemetry"
)
with gr.Row():
with gr.Column():
dtc_component = DTCDisplay(
label="Diagnostic Trouble Codes",
value=[],
scale=1
)
with gr.Row():
with gr.Column():
gr.Markdown("### π Vehicle Information (VIN Decoded)", elem_classes="section-title")
vin_dataframe = gr.DataFrame(
value=pd.DataFrame({
'Property': [ "NO DATA" ],
'Value': [ '' ]
}),
headers=["Property", "Value"],
datatype=["str", "str"],
column_count=2,
interactive=False,
column_widths=["30%", "60%"],
max_height="100%",
wrap=True
)
with gr.Tab("Demo Video"):
create_demo_video_tab()
with gr.Tab("Hackathon project detail"):
create_hackathon_detail_tab()
with gr.Tab("MCP Server on embedded device"):
create_mcp_server_tab()
# Event handlers (must be outside the Row context but can reference components)
input.submit(
interact_with_langchain_agent,
[input, chatbot, session_id, historic_data_state, vin_data_state, dtc_data_state],
[chatbot, historic_data_state, vin_data_state, dtc_data_state],
trigger_mode="always_last"
).then(
lambda:"", None, input
).then(
create_plot, historic_data_state, plot_output
).then(
update_vin_dataframe, vin_data_state, vin_dataframe
).then(
update_dtc, dtc_data_state, dtc_component)
submit_btn.click(
interact_with_langchain_agent,
[input, chatbot, session_id, historic_data_state, vin_data_state, dtc_data_state],
[chatbot, historic_data_state, vin_data_state, dtc_data_state],
trigger_mode="always_last"
).then(
lambda:"", None, input
).then(
create_plot, historic_data_state, plot_output
).then(
update_vin_dataframe, vin_data_state, vin_dataframe
).then(
update_dtc, dtc_data_state, dtc_component)
clear_btn.click(clear_history, None, [chatbot, historic_data_state, vin_data_state, dtc_data_state, plot_output, vin_dataframe, dtc_component])
gr.set_static_paths(paths=[Path.cwd().absolute()/"assets"])
demo.launch(css_paths=["styles.css"]) |