Spaces:
Running
Running
File size: 13,367 Bytes
ca65aec 50083c6 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 50083c6 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec 2b95be0 ca65aec b11a5e9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 |
#!/usr/bin/env python3
"""Ghost Malone: MCP-powered emotional intelligence chatbot"""
import json
import asyncio
import os
from dotenv import load_dotenv
import gradio as gr
import plotly.graph_objects as go
from utils.orchestrator import get_orchestrator
load_dotenv()
# Clear memory on startup for fresh conversations
if os.path.exists("memory.json"):
os.remove("memory.json")
print("π§Ή Cleared previous memory for fresh start")
_event_loop = None
_orchestrator = None
async def _boot_orchestrator():
"""Bootstrap the orchestrator with all MCP servers."""
global _orchestrator
_orchestrator = await get_orchestrator()
print("π§° Ghost Malone orchestrator initialized")
# Create a persistent event loop
_event_loop = asyncio.new_event_loop()
asyncio.set_event_loop(_event_loop)
_event_loop.run_until_complete(_boot_orchestrator())
def _run(coro):
"""Run async coroutine in the persistent event loop."""
return _event_loop.run_until_complete(coro)
def _clear_memory_file():
"""Delete the memory file so conversations truly restart."""
mem_path = os.getenv("GM_MEMORY_FILE", "memory.json")
try:
if os.path.exists(mem_path):
os.remove(mem_path)
print(f"π§Ή Cleared memory file: {mem_path}")
else:
print(f"βΉοΈ Memory file already clean: {mem_path}")
except Exception as e:
print(f"β οΈ Failed to clear memory file {mem_path}: {e}")
def create_emotion_plot(emotion_arc):
"""Create a Plotly scatter plot showing emotions on valence/arousal grid."""
if not emotion_arc or not emotion_arc.get("trajectory"):
# Empty plot with quadrant labels
fig = go.Figure()
fig.add_trace(
go.Scatter(
x=[0],
y=[0.5],
mode="markers",
marker=dict(size=1, color="lightgray"),
showlegend=False,
)
)
# Add quadrant labels
fig.add_annotation(
x=0.5,
y=0.75,
text="Excited",
showarrow=False,
font=dict(size=10, color="gray"),
)
fig.add_annotation(
x=-0.5,
y=0.75,
text="Anxious",
showarrow=False,
font=dict(size=10, color="gray"),
)
fig.add_annotation(
x=0.5,
y=0.25,
text="Calm",
showarrow=False,
font=dict(size=10, color="gray"),
)
fig.add_annotation(
x=-0.5,
y=0.25,
text="Sad",
showarrow=False,
font=dict(size=10, color="gray"),
)
fig.update_layout(
title="Emotion Trajectory (Valence Γ Arousal)",
xaxis=dict(title="Valence", range=[-1.2, 1.2], zeroline=True),
yaxis=dict(title="Arousal", range=[-0.1, 1.1], zeroline=False),
height=500,
showlegend=False,
)
return fig
trajectory = emotion_arc.get("trajectory", [])
# Extract valence and arousal from trajectory
x_vals = [item.get("valence", 0) for item in trajectory]
y_vals = [item.get("arousal", 0.5) for item in trajectory]
labels = [item.get("primary_label", "neutral") for item in trajectory]
# Color points from oldest (light) to newest (dark)
colors = list(range(len(x_vals)))
fig = go.Figure()
# Add trajectory line
if len(x_vals) > 1:
fig.add_trace(
go.Scatter(
x=x_vals,
y=y_vals,
mode="lines",
line=dict(color="lightblue", width=1, dash="dot"),
showlegend=False,
hoverinfo="skip",
)
)
# Add emotion points
fig.add_trace(
go.Scatter(
x=x_vals,
y=y_vals,
mode="markers+text",
marker=dict(
size=12,
color=colors,
colorscale="Blues",
showscale=False,
line=dict(width=1, color="white"),
),
text=labels,
textposition="top center",
textfont=dict(size=8),
hovertemplate="<b>%{text}</b><br>Valence: %{x:.2f}<br>Arousal: %{y:.2f}<extra></extra>",
showlegend=False,
)
)
# Add quadrant labels
fig.add_annotation(
x=0.5,
y=0.75,
text="Excited",
showarrow=False,
font=dict(size=10, color="lightgray"),
)
fig.add_annotation(
x=-0.5,
y=0.75,
text="Anxious",
showarrow=False,
font=dict(size=10, color="lightgray"),
)
fig.add_annotation(
x=0.5,
y=0.25,
text="Calm",
showarrow=False,
font=dict(size=10, color="lightgray"),
)
fig.add_annotation(
x=-0.5,
y=0.25,
text="Sad",
showarrow=False,
font=dict(size=10, color="lightgray"),
)
# Add quadrant lines
fig.add_hline(y=0.5, line=dict(color="lightgray", width=1, dash="dash"))
fig.add_vline(x=0, line=dict(color="lightgray", width=1, dash="dash"))
direction = emotion_arc.get("direction", "stable")
fig.update_layout(
title=f"Emotion Trajectory: {direction}",
xaxis=dict(title="Valence (negative β β positive)", range=[-1.2, 1.2]),
yaxis=dict(title="Arousal (calm β β intense)", range=[-0.1, 1.1]),
height=500,
showlegend=False,
plot_bgcolor="#fafafa",
)
return fig
def chat(
user_msg: str,
history: list[list[str]] | None,
min_msgs: int,
min_conf: float,
min_arous: float,
):
history = history or []
# Convert history to messages format for orchestrator
messages = []
for user_text, bot_text in history:
messages.append({"role": "user", "content": user_text})
if bot_text:
messages.append({"role": "assistant", "content": bot_text})
# Add current user message
messages.append({"role": "user", "content": user_msg})
# Show thinking indicator
thinking_history = history + [[user_msg, "π» *Ghost Malone is listening...*"]]
toolbox_log = "π§° **Toolbox Activity:**\n\nβ³ Initializing pipeline..."
yield thinking_history, history, user_msg, "π *Analyzing emotions and needs...*", None, "π DEBUG: Processing...", toolbox_log
# Use orchestrator for full pipeline with custom thresholds
try:
result = _run(
_orchestrator.process_message(
user_text=user_msg,
conversation_context=messages[:-1],
intervention_thresholds={
"min_messages": int(min_msgs),
"min_confidence": float(min_conf),
"min_arousal": float(min_arous),
},
)
)
# Extract data from result
emotion = result.get("emotion", {})
inferred_needs = result.get("inferred_needs", [])
emotion_arc = result.get("emotion_arc", {})
reply = result.get("response", "π» I'm here, listening...")
toolbox_activity = result.get("toolbox_log", "")
except Exception as e:
print(f"β οΈ orchestrator.process_message failed: {type(e).__name__}: {e}")
import traceback
traceback.print_exc()
emotion = {
"tone": "neutral",
"labels": ["neutral"],
"valence": 0.0,
"arousal": 0.5,
}
inferred_needs = []
emotion_arc = None
reply = f"π» (processing error) I still hear you: {user_msg}"
toolbox_activity = "β οΈ Error during processing"
# Add to history (classic chatbot format)
new_history = history + [[user_msg, reply]]
# Format emotion arc display
arc_str = "π *Emotion arc will appear here*"
if isinstance(emotion_arc, dict) and emotion_arc.get("trajectory"):
direction = emotion_arc.get("direction", "stable")
summary = emotion_arc.get("summary", "")
arc_str = f"**π Emotion Arc: {direction}**\n\n{summary}"
# Format needs display
needs_str = ""
if inferred_needs:
needs_list = [
f"{n['icon']} **{n['label']}** ({int(n['confidence']*100)}%)"
for n in inferred_needs
]
needs_str = "\n\n**π― Detected Needs:**\n" + " | ".join(needs_list)
# Combine arc and needs
context_display = arc_str + needs_str
# Create emotion plot
emotion_plot = create_emotion_plot(emotion_arc)
# Debug display for needs
debug_needs = ""
if inferred_needs:
debug_needs = "**π DEBUG - Detected Needs:**\n\n"
for need in inferred_needs:
debug_needs += (
f"- {need['icon']} **{need['label']}** ({need['confidence']:.1%})\n"
)
debug_needs += f" - Need type: `{need['need']}`\n"
if need.get("contexts"):
debug_needs += f" - Contexts: {', '.join(need['contexts'])}\n"
if need.get("emotions"):
debug_needs += f" - Emotions: {', '.join(need['emotions'])}\n"
debug_needs += "\n"
else:
debug_needs = "π DEBUG: No needs detected"
# Final yield with complete response (chatbot history, state, clear msg, arc, plot, debug, toolbox)
yield new_history, new_history, "", context_display, emotion_plot, debug_needs, toolbox_activity
with gr.Blocks(title="Ghost Malone") as demo:
gr.Markdown("## π» Ghost Malone\n*I just want to hear you talk.*")
with gr.Row():
with gr.Column(scale=2):
chatbot = gr.Chatbot(height=500)
emotion_arc_md = gr.Markdown("π *Emotion arc will appear here*")
with gr.Column(scale=1):
emotion_plot = gr.Plot(label="Emotion Trajectory")
state = gr.State([])
with gr.Row():
msg = gr.Textbox(
placeholder="Tell Ghost Malone what's on your mind...",
label="Message",
scale=4,
)
clear_btn = gr.Button("π Clear Conversation", scale=1, size="sm")
# Toolbox activity log
toolbox_panel = gr.Markdown(
"π§° **Toolbox Activity:**\n\nWaiting for first message...",
label="MCP Tools & Lexicons",
)
# Debug panel for needs detection
debug_panel = gr.Markdown("π DEBUG: No needs detected", label="Needs Debug Info")
# Intervention controls (SIMPLIFIED for demo)
gr.Markdown("### π‘ Intervention Controls (for tuning)")
with gr.Row():
min_messages = gr.Slider(
minimum=1,
maximum=5,
value=2,
step=1,
label="Min Messages",
info="Wait this many messages before showing interventions",
)
min_confidence = gr.Slider(
minimum=0.5,
maximum=1.0,
value=0.70,
step=0.05,
label="Min Confidence",
info="How sure we need to be about the detected need",
)
min_arousal = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.40,
step=0.05,
label="Min Arousal",
info="How intense emotions need to be (0.4 = moderate)",
)
msg.submit(
chat,
[msg, state, min_messages, min_confidence, min_arousal],
[chatbot, state, msg, emotion_arc_md, emotion_plot, debug_panel, toolbox_panel],
)
def clear_conversation():
"""Reset conversation without restarting MCP servers"""
_clear_memory_file()
return (
[], # chatbot
[], # state
"", # msg
"π *Emotion arc will appear here*", # emotion_arc_md
create_emotion_plot({}), # emotion_plot (empty)
"π DEBUG: No needs detected", # debug_panel
"π§° **Toolbox Activity:**\n\nWaiting for first message...", # toolbox_panel
)
clear_btn.click(
clear_conversation,
None,
[chatbot, state, msg, emotion_arc_md, emotion_plot, debug_panel, toolbox_panel],
)
with gr.Accordion("π§° MCP Tools (manual)", open=False):
tool_name = gr.Textbox(label="Tool name (e.g., analyze, remember)")
tool_args = gr.Textbox(label='Args JSON (e.g., {"text":"hello"})')
run_btn = gr.Button("Run tool")
async def run_tool(name: str, args_text: str, history: list[list[str]] | None):
history = history or []
try:
args = json.loads(args_text) if args_text.strip() else {}
except json.JSONDecodeError as e:
history.append(["", f"π οΈ Invalid JSON: {e}"])
return history, history
try:
out = await _orchestrator.mux.call(name, args)
history.append(["", f"π οΈ `{name}` β\n{out}"])
except Exception as e:
history.append(["", f"π οΈ `{name}` error β {e}"])
return history, history
run_btn.click(run_tool, [tool_name, tool_args, state], [chatbot, state])
if __name__ == "__main__":
print("π starting Ghost Malone serverβ¦")
demo.launch(auth=None) # Disable OAuth to avoid HfFolder dependency
|