Spaces:
Running
Running
File size: 12,626 Bytes
c92ea65 abfac44 c92ea65 abfac44 d8c5e10 7936d9a d8c5e10 abfac44 d8c5e10 abfac44 d8c5e10 abfac44 8b9fcae d8c5e10 8b9fcae 7936d9a abfac44 f5327ec abfac44 c92ea65 abfac44 f5327ec abfac44 f5327ec abfac44 f5327ec abfac44 7aaf290 c92ea65 abfac44 7936d9a 33bbb87 f5327ec 7936d9a 33bbb87 7936d9a 33bbb87 7936d9a 8b79057 235c45d 7936d9a 33bbb87 f5327ec 7936d9a 8b385b3 7936d9a 8b385b3 ab133b3 0c64b87 8b385b3 0c64b87 8b385b3 0c64b87 8b385b3 7936d9a 235c45d 7936d9a 235c45d 8b385b3 ab133b3 7936d9a 8b385b3 7936d9a d8c5e10 7936d9a 8b385b3 ab133b3 7936d9a 8b385b3 ab133b3 7936d9a 8b385b3 ab133b3 7936d9a 8b385b3 ab133b3 7936d9a 8b385b3 ab133b3 7936d9a 8b9fcae 8b385b3 0c64b87 8b9fcae 0c64b87 8b9fcae 8b385b3 ab133b3 8b9fcae abfac44 6eda213 abfac44 7936d9a 6eda213 abfac44 7936d9a c92ea65 6eda213 33bbb87 7936d9a d8c5e10 7936d9a 6eda213 abfac44 33bbb87 7936d9a 33bbb87 f5327ec abfac44 6eda213 7936d9a 6eda213 abfac44 6eda213 abfac44 7936d9a 6eda213 7aaf290 8b9fcae 0c64b87 7aaf290 0c64b87 ab133b3 0c64b87 ab133b3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 |
"""
Gradio MCP Client for Remote MCP Server - With File Upload
"""
import json
import os
import shutil
import warnings
from contextlib import asynccontextmanager
import gradio as gr
from fastmcp import Client
from fastmcp.client.transports import StreamableHttpTransport
from openai import OpenAI
# Suppress deprecation warnings
warnings.filterwarnings(
"ignore", category=DeprecationWarning, module="websockets.legacy"
)
warnings.filterwarnings(
"ignore", category=DeprecationWarning, module="uvicorn.protocols.websockets"
)
# Import orchestrator functions (if available)
try:
from orchestrator import run_orchestrated_chat, run_orchestrated_chat_stream
except ImportError:
# Fallback if orchestrator module not found
run_orchestrated_chat = None
run_orchestrated_chat_stream = None
# Configuration
MCP_SERVER_URL = "https://mcp-1st-birthday-auto-deployer.hf.space/gradio_api/mcp/"
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
MODEL = "gpt-5-mini"
# Will be set when app launches
APP_URL = None
class MCPClientManager:
def __init__(self, server_url: str):
self.server_url = server_url
@asynccontextmanager
async def get_client(self):
transport = StreamableHttpTransport(self.server_url)
async with Client(transport) as client:
yield client
async def get_tools(self) -> list:
async with self.get_client() as client:
return await client.list_tools()
async def call_tool(self, tool_name: str, arguments: dict) -> str:
async with self.get_client() as client:
result = await client.call_tool(tool_name, arguments)
if hasattr(result, "content"):
if isinstance(result.content, list):
return "\n".join(
str(item.text) if hasattr(item, "text") else str(item)
for item in result.content
)
return str(result.content)
return str(result)
def to_openai_tools(self, tools: list) -> list:
return [
{
"type": "function",
"function": {
"name": tool.name,
"description": tool.description or "",
"parameters": {
"type": "object",
"properties": tool.inputSchema.get("properties", {})
if tool.inputSchema
else {},
"required": tool.inputSchema.get("required", [])
if tool.inputSchema
else [],
},
},
}
for tool in tools
]
mcp = MCPClientManager(MCP_SERVER_URL)
openai_client = OpenAI(api_key=OPENAI_API_KEY)
SYSTEM_PROMPT = """You are a helpful ML assistant with access to Auto Deployer tools.
IMPORTANT: When calling tools with file_path parameter:
- Use the provided file URL directly
- Pass ONLY the raw URL (e.g., "https://...")
- Never add prefixes like "Gradio File Input - "
Always pass URLs directly without any prefix."""
async def chat(message: str, history: list, file_url: str):
"""Process chat with optional file URL"""
tools = await mcp.get_tools()
openai_tools = mcp.to_openai_tools(tools)
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
# Add file context if available
user_content = message
if file_url:
user_content = f"[Uploaded CSV file URL: {file_url}]\n\n{message}"
# Build history
for item in history:
if isinstance(item, (list, tuple)) and len(item) == 2:
user_msg, assistant_msg = item
messages.append({"role": "user", "content": user_msg})
if assistant_msg:
messages.append({"role": "assistant", "content": assistant_msg})
messages.append({"role": "user", "content": user_content})
# First call
response = openai_client.chat.completions.create(
model=MODEL,
messages=messages,
tools=openai_tools,
tool_choice="auto",
)
assistant_message = response.choices[0].message
# Handle tool calls
while assistant_message.tool_calls:
messages.append(assistant_message)
yield "🔧 Calling tools...\n\n"
for tool_call in assistant_message.tool_calls:
tool_name = tool_call.function.name
arguments = json.loads(tool_call.function.arguments)
# Clean file_path
if "file_path" in arguments:
fp = arguments["file_path"]
if fp.startswith("Gradio File Input - "):
arguments["file_path"] = fp.replace("Gradio File Input - ", "")
yield f"⚙️ Running `{tool_name}`...\n\n"
try:
tool_result = await mcp.call_tool(tool_name, arguments)
except Exception as e:
tool_result = f"Error: {e}"
messages.append(
{
"role": "tool",
"tool_call_id": tool_call.id,
"content": tool_result,
}
)
response = openai_client.chat.completions.create(
model=MODEL,
messages=messages,
tools=openai_tools,
tool_choice="auto",
)
assistant_message = response.choices[0].message
# Stream final response
stream = openai_client.chat.completions.create(
model=MODEL,
messages=messages,
stream=True,
)
partial_response = ""
for chunk in stream:
if chunk.choices[0].delta.content:
partial_response += chunk.choices[0].delta.content
yield partial_response
def handle_upload(file_obj, request: gr.Request):
"""
1) Take uploaded file
2) Copy to /tmp for a stable path
3) Build a public gradio file URL
"""
if file_obj is None:
return None, None
# Local path where Gradio stored the file
local_path = file_obj.name
# Optional: stabilize path under /tmp
stable_path = os.path.join("/tmp", os.path.basename(local_path))
try:
shutil.copy(local_path, stable_path)
local_path = stable_path
except Exception:
# If copy fails, use original path
pass
# Use Gradio's internal file URL format
base_url = str(request.base_url).rstrip('/')
public_url = f"{base_url}/gradio_api/file={local_path}"
return public_url, public_url
async def chat_send_stream(user_msg, history, file_url):
"""
Streaming chat function that yields updates including tool invocations.
- history: list of message dictionaries with 'role' and 'content' keys
- file_url: required HTTP URL to the uploaded file
"""
if history is None:
history = []
# Ensure history is in proper dict format
messages = []
for item in history:
if isinstance(item, dict) and "role" in item and "content" in item:
messages.append(item)
elif isinstance(item, (list, tuple)) and len(item) == 2:
user_msg_item, assistant_msg_item = item
messages.append({"role": "user", "content": str(user_msg_item)})
if assistant_msg_item:
messages.append({"role": "assistant", "content": str(assistant_msg_item)})
# Add current user message
messages.append({"role": "user", "content": user_msg})
# Add thinking placeholder
messages.append({"role": "assistant", "content": "🤔 Thinking..."})
# If no file, respond with error
print(f"DEBUG: chat_send_stream - file_url: {file_url}")
if not file_url:
print("DEBUG: No file URL found, showing error")
messages[-1] = {"role": "assistant", "content": "Upload a file first."}
yield messages
return
# Use orchestrator if available
if run_orchestrated_chat_stream:
# Convert to tuple format for orchestrator (excluding current thinking message)
history_tuples = []
for item in messages[:-1]:
if item["role"] == "user":
history_tuples.append((item.get("content", ""), ""))
elif item["role"] == "assistant":
if history_tuples:
history_tuples[-1] = (history_tuples[-1][0], item.get("content", ""))
# Stream the response using async generator
async for chunk in run_orchestrated_chat_stream(
user_msg, history_tuples, file_url
):
chunk_type = chunk.get("type", "")
chunk_content = chunk.get("content", "")
if chunk_type == "thinking":
messages[-1] = {"role": "assistant", "content": chunk_content}
yield messages
elif chunk_type == "tool":
messages[-1] = {"role": "assistant", "content": messages[-1]["content"] + f"\n{chunk_content}"}
yield messages
elif chunk_type == "result":
messages[-1] = {"role": "assistant", "content": messages[-1]["content"] + f"\n{chunk_content}"}
yield messages
elif chunk_type == "final":
messages[-1] = {"role": "assistant", "content": chunk_content}
yield messages
elif chunk_type == "error":
messages[-1] = {"role": "assistant", "content": chunk_content}
yield messages
else:
# Fallback: use the existing chat function with streaming
simple_history = [item for item in messages[:-1] if item["role"] in ["user", "assistant"]]
response_text = ""
async for chunk in chat(user_msg, simple_history, file_url):
response_text = chunk
messages[-1] = {"role": "assistant", "content": response_text}
yield messages
with gr.Blocks(title="MCP + GPT-5 mini - Streaming Chat") as demo:
gr.Markdown(
"""
# AI-Driven MLOps Agent 🤖
- **Upload a CSV file** (required)
- Real-time streaming with live tool invocations
- Get intelligent insights, training, or deployment based on your needs
"""
)
uploader = gr.File(
label="Required CSV file upload",
file_count="single",
type="filepath",
file_types=[".csv"], # Restrict to CSV files only
)
# Internal file URL storage (hidden from UI)
file_url_state = gr.State(value=None)
# Temporary textbox for debugging
debug_file_url = gr.Textbox(label="Debug File URL", interactive=False)
# Use message format for better streaming support
chatbot = gr.Chatbot(
label="Chat",
avatar_images=(
None,
"https://huggingface.co/datasets/huggingface/brand-assets/resolve/main/hf-logo.png",
),
)
msg = gr.Textbox(label="Message", interactive=True)
send = gr.Button("Send", interactive=True)
# When file changes, generate URL and update state
uploader.change(
handle_upload,
inputs=[uploader],
outputs=[file_url_state, debug_file_url],
)
# Send button (streaming) - update chatbot and clear input
send.click(
chat_send_stream,
inputs=[msg, chatbot, file_url_state],
outputs=[chatbot],
).then(lambda: "", outputs=[msg])
# Press Enter to send (streaming) - update chatbot and clear input
msg.submit(
chat_send_stream,
inputs=[msg, chatbot, file_url_state],
outputs=[chatbot],
).then(lambda: "", outputs=[msg])
async def test_mcp_connection():
"""Test MCP connection on startup"""
try:
print("Testing MCP server connection...")
tools = await mcp.get_tools()
print(f"✅ Connected to MCP server. Found {len(tools)} tools.")
return True
except Exception as e:
print(f"❌ Failed to connect to MCP server: {e}")
return False
if __name__ == "__main__":
import asyncio
import warnings
# Suppress all warnings for cleaner output
warnings.filterwarnings("ignore")
# Test MCP connection on startup
try:
print(f"Attempting to connect to MCP server: {MCP_SERVER_URL}")
asyncio.run(test_mcp_connection())
except Exception as e:
print(f"MCP connection test failed: {e}")
print("Continuing anyway - connection will be retried during chat...")
# Launch the app
demo.queue().launch(
allowed_paths=["/tmp"],
ssr_mode=False,
show_error=True,
quiet=True,
)
|