Spaces:
Running
Running
Abid Ali Awan
commited on
Commit
·
693bdb2
1
Parent(s):
45bd7ce
refactor: Revamp Gradio MCP Connector to enhance performance and user experience by implementing a two-phase chat process with tool resolution and streaming responses, updating the system prompt for clarity, and improving file upload handling.
Browse files- app.py +130 -323
- todolist.md +5 -0
app.py
CHANGED
|
@@ -1,379 +1,186 @@
|
|
| 1 |
"""
|
| 2 |
-
Gradio MCP
|
| 3 |
"""
|
| 4 |
|
| 5 |
-
import json
|
| 6 |
import os
|
| 7 |
import shutil
|
| 8 |
-
import warnings
|
| 9 |
-
from contextlib import asynccontextmanager
|
| 10 |
-
|
| 11 |
import gradio as gr
|
| 12 |
-
from fastmcp import Client
|
| 13 |
-
from fastmcp.client.transports import StreamableHttpTransport
|
| 14 |
from openai import OpenAI
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
)
|
| 20 |
-
warnings.filterwarnings(
|
| 21 |
-
"ignore", category=DeprecationWarning, module="uvicorn.protocols.websockets"
|
| 22 |
-
)
|
| 23 |
-
|
| 24 |
-
# Import orchestrator functions (if available)
|
| 25 |
-
try:
|
| 26 |
-
from orchestrator import run_orchestrated_chat, run_orchestrated_chat_stream
|
| 27 |
-
except ImportError:
|
| 28 |
-
# Fallback if orchestrator module not found
|
| 29 |
-
run_orchestrated_chat = None
|
| 30 |
-
run_orchestrated_chat_stream = None
|
| 31 |
-
|
| 32 |
-
# Configuration
|
| 33 |
-
MCP_SERVER_URL = "https://mcp-1st-birthday-auto-deployer.hf.space/gradio_api/mcp/"
|
| 34 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
APP_URL = None
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
class MCPClientManager:
|
| 42 |
-
def __init__(self, server_url: str):
|
| 43 |
-
self.server_url = server_url
|
| 44 |
-
|
| 45 |
-
@asynccontextmanager
|
| 46 |
-
async def get_client(self):
|
| 47 |
-
transport = StreamableHttpTransport(self.server_url)
|
| 48 |
-
async with Client(transport) as client:
|
| 49 |
-
yield client
|
| 50 |
-
|
| 51 |
-
async def get_tools(self) -> list:
|
| 52 |
-
async with self.get_client() as client:
|
| 53 |
-
return await client.list_tools()
|
| 54 |
-
|
| 55 |
-
async def call_tool(self, tool_name: str, arguments: dict) -> str:
|
| 56 |
-
async with self.get_client() as client:
|
| 57 |
-
result = await client.call_tool(tool_name, arguments)
|
| 58 |
-
if hasattr(result, "content"):
|
| 59 |
-
if isinstance(result.content, list):
|
| 60 |
-
return "\n".join(
|
| 61 |
-
str(item.text) if hasattr(item, "text") else str(item)
|
| 62 |
-
for item in result.content
|
| 63 |
-
)
|
| 64 |
-
return str(result.content)
|
| 65 |
-
return str(result)
|
| 66 |
-
|
| 67 |
-
def to_openai_tools(self, tools: list) -> list:
|
| 68 |
-
return [
|
| 69 |
-
{
|
| 70 |
-
"type": "function",
|
| 71 |
-
"function": {
|
| 72 |
-
"name": tool.name,
|
| 73 |
-
"description": tool.description or "",
|
| 74 |
-
"parameters": {
|
| 75 |
-
"type": "object",
|
| 76 |
-
"properties": tool.inputSchema.get("properties", {})
|
| 77 |
-
if tool.inputSchema
|
| 78 |
-
else {},
|
| 79 |
-
"required": tool.inputSchema.get("required", [])
|
| 80 |
-
if tool.inputSchema
|
| 81 |
-
else [],
|
| 82 |
-
},
|
| 83 |
-
},
|
| 84 |
-
}
|
| 85 |
-
for tool in tools
|
| 86 |
-
]
|
| 87 |
-
|
| 88 |
-
|
| 89 |
-
mcp = MCPClientManager(MCP_SERVER_URL)
|
| 90 |
-
openai_client = OpenAI(api_key=OPENAI_API_KEY)
|
| 91 |
-
|
| 92 |
-
SYSTEM_PROMPT = """You are a helpful ML assistant with access to Auto Deployer tools.
|
| 93 |
-
|
| 94 |
-
IMPORTANT: When calling tools with file_path parameter:
|
| 95 |
-
- Use the provided file URL directly
|
| 96 |
-
- Pass ONLY the raw URL (e.g., "https://...")
|
| 97 |
-
- Never add prefixes like "Gradio File Input - "
|
| 98 |
-
|
| 99 |
-
Always pass URLs directly without any prefix."""
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
async def chat(message: str, history: list, file_url: str):
|
| 103 |
-
"""Process chat with optional file URL"""
|
| 104 |
-
tools = await mcp.get_tools()
|
| 105 |
-
openai_tools = mcp.to_openai_tools(tools)
|
| 106 |
-
|
| 107 |
-
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
| 108 |
-
|
| 109 |
-
# Add file context if available
|
| 110 |
-
user_content = message
|
| 111 |
-
if file_url:
|
| 112 |
-
user_content = f"[Uploaded CSV file URL: {file_url}]\n\n{message}"
|
| 113 |
-
|
| 114 |
-
# Build history
|
| 115 |
-
for item in history:
|
| 116 |
-
if isinstance(item, (list, tuple)) and len(item) == 2:
|
| 117 |
-
user_msg, assistant_msg = item
|
| 118 |
-
messages.append({"role": "user", "content": user_msg})
|
| 119 |
-
if assistant_msg:
|
| 120 |
-
messages.append({"role": "assistant", "content": assistant_msg})
|
| 121 |
-
|
| 122 |
-
messages.append({"role": "user", "content": user_content})
|
| 123 |
-
|
| 124 |
-
# First call
|
| 125 |
-
response = openai_client.chat.completions.create(
|
| 126 |
-
model=MODEL,
|
| 127 |
-
messages=messages,
|
| 128 |
-
tools=openai_tools,
|
| 129 |
-
tool_choice="auto",
|
| 130 |
-
)
|
| 131 |
-
|
| 132 |
-
assistant_message = response.choices[0].message
|
| 133 |
-
|
| 134 |
-
# Handle tool calls
|
| 135 |
-
while assistant_message.tool_calls:
|
| 136 |
-
messages.append(assistant_message)
|
| 137 |
-
|
| 138 |
-
yield "🔧 Calling tools...\n\n"
|
| 139 |
-
|
| 140 |
-
for tool_call in assistant_message.tool_calls:
|
| 141 |
-
tool_name = tool_call.function.name
|
| 142 |
-
arguments = json.loads(tool_call.function.arguments)
|
| 143 |
-
|
| 144 |
-
# Clean file_path
|
| 145 |
-
if "file_path" in arguments:
|
| 146 |
-
fp = arguments["file_path"]
|
| 147 |
-
if fp.startswith("Gradio File Input - "):
|
| 148 |
-
arguments["file_path"] = fp.replace("Gradio File Input - ", "")
|
| 149 |
-
|
| 150 |
-
yield f"⚙️ Running `{tool_name}`...\n\n"
|
| 151 |
-
|
| 152 |
-
try:
|
| 153 |
-
tool_result = await mcp.call_tool(tool_name, arguments)
|
| 154 |
-
except Exception as e:
|
| 155 |
-
tool_result = f"Error: {e}"
|
| 156 |
-
|
| 157 |
-
messages.append(
|
| 158 |
-
{
|
| 159 |
-
"role": "tool",
|
| 160 |
-
"tool_call_id": tool_call.id,
|
| 161 |
-
"content": tool_result,
|
| 162 |
-
}
|
| 163 |
-
)
|
| 164 |
-
|
| 165 |
-
response = openai_client.chat.completions.create(
|
| 166 |
-
model=MODEL,
|
| 167 |
-
messages=messages,
|
| 168 |
-
tools=openai_tools,
|
| 169 |
-
tool_choice="auto",
|
| 170 |
-
)
|
| 171 |
-
assistant_message = response.choices[0].message
|
| 172 |
-
|
| 173 |
-
# Stream final response
|
| 174 |
-
stream = openai_client.chat.completions.create(
|
| 175 |
-
model=MODEL,
|
| 176 |
-
messages=messages,
|
| 177 |
-
stream=True,
|
| 178 |
-
)
|
| 179 |
|
| 180 |
-
|
| 181 |
-
for chunk in stream:
|
| 182 |
-
if chunk.choices[0].delta.content:
|
| 183 |
-
partial_response += chunk.choices[0].delta.content
|
| 184 |
-
yield partial_response
|
| 185 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 186 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 187 |
def handle_upload(file_obj, request: gr.Request):
|
| 188 |
-
"""
|
| 189 |
-
1) Take uploaded file
|
| 190 |
-
2) Copy to /tmp for a stable path
|
| 191 |
-
3) Build a public gradio file URL
|
| 192 |
-
"""
|
| 193 |
if file_obj is None:
|
| 194 |
-
return None
|
| 195 |
|
| 196 |
-
#
|
| 197 |
local_path = file_obj.name
|
| 198 |
-
|
| 199 |
-
# Optional: stabilize path under /tmp
|
| 200 |
stable_path = os.path.join("/tmp", os.path.basename(local_path))
|
| 201 |
try:
|
| 202 |
shutil.copy(local_path, stable_path)
|
| 203 |
local_path = stable_path
|
| 204 |
except Exception:
|
| 205 |
-
# If copy fails, use original path
|
| 206 |
pass
|
| 207 |
|
| 208 |
-
#
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
return public_url, public_url
|
| 213 |
|
| 214 |
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
"""
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
"""
|
|
|
|
| 221 |
if history is None:
|
| 222 |
history = []
|
| 223 |
|
| 224 |
-
#
|
| 225 |
-
messages = []
|
| 226 |
-
for
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
# Add current user message
|
| 236 |
-
messages.append({"role": "user", "content": user_msg})
|
| 237 |
-
|
| 238 |
-
# Add thinking placeholder
|
| 239 |
-
messages.append({"role": "assistant", "content": "🤔 Thinking..."})
|
| 240 |
-
|
| 241 |
-
# If no file, respond with error
|
| 242 |
-
if not file_url:
|
| 243 |
-
messages[-1] = {"role": "assistant", "content": "Upload a file first."}
|
| 244 |
-
yield messages
|
| 245 |
-
return
|
| 246 |
-
|
| 247 |
-
# Use orchestrator if available
|
| 248 |
-
if run_orchestrated_chat_stream:
|
| 249 |
-
# Convert to tuple format for orchestrator (excluding current thinking message)
|
| 250 |
-
history_tuples = []
|
| 251 |
-
for item in messages[:-1]:
|
| 252 |
-
if item["role"] == "user":
|
| 253 |
-
history_tuples.append((item.get("content", ""), ""))
|
| 254 |
-
elif item["role"] == "assistant":
|
| 255 |
-
if history_tuples:
|
| 256 |
-
history_tuples[-1] = (history_tuples[-1][0], item.get("content", ""))
|
| 257 |
-
|
| 258 |
-
# Stream the response using async generator
|
| 259 |
-
async for chunk in run_orchestrated_chat_stream(
|
| 260 |
-
user_msg, history_tuples, file_url
|
| 261 |
-
):
|
| 262 |
-
chunk_type = chunk.get("type", "")
|
| 263 |
-
chunk_content = chunk.get("content", "")
|
| 264 |
-
|
| 265 |
-
if chunk_type == "thinking":
|
| 266 |
-
messages[-1] = {"role": "assistant", "content": chunk_content}
|
| 267 |
-
yield messages
|
| 268 |
-
elif chunk_type == "tool":
|
| 269 |
-
messages[-1] = {"role": "assistant", "content": messages[-1]["content"] + f"\n{chunk_content}"}
|
| 270 |
-
yield messages
|
| 271 |
-
elif chunk_type == "result":
|
| 272 |
-
messages[-1] = {"role": "assistant", "content": messages[-1]["content"] + f"\n{chunk_content}"}
|
| 273 |
-
yield messages
|
| 274 |
-
elif chunk_type == "final":
|
| 275 |
-
messages[-1] = {"role": "assistant", "content": chunk_content}
|
| 276 |
-
yield messages
|
| 277 |
-
elif chunk_type == "error":
|
| 278 |
-
messages[-1] = {"role": "assistant", "content": chunk_content}
|
| 279 |
-
yield messages
|
| 280 |
else:
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
| 290 |
-
|
| 291 |
-
|
| 292 |
-
|
| 293 |
-
|
| 294 |
-
gr.Markdown(
|
| 295 |
-
"""
|
| 296 |
-
# AI-Driven MLOps Agent 🤖
|
| 297 |
-
- **Upload a CSV file** (required)
|
| 298 |
-
- Real-time streaming with live tool invocations
|
| 299 |
-
- Get intelligent insights, training, or deployment based on your needs
|
| 300 |
-
"""
|
| 301 |
)
|
| 302 |
|
| 303 |
-
|
| 304 |
-
label="Required CSV file upload",
|
| 305 |
-
file_count="single",
|
| 306 |
-
type="filepath",
|
| 307 |
-
file_types=[".csv"], # Restrict to CSV files only
|
| 308 |
-
)
|
| 309 |
|
| 310 |
-
#
|
| 311 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 312 |
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 320 |
)
|
| 321 |
|
| 322 |
-
|
| 323 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
|
| 325 |
-
# When file changes, generate URL and update state
|
| 326 |
-
uploader.change(
|
| 327 |
-
handle_upload,
|
| 328 |
-
inputs=[uploader],
|
| 329 |
-
outputs=[file_url_state],
|
| 330 |
-
)
|
| 331 |
|
| 332 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
send.click(
|
| 334 |
chat_send_stream,
|
| 335 |
-
inputs=[msg, chatbot,
|
| 336 |
outputs=[chatbot],
|
| 337 |
).then(lambda: "", outputs=[msg])
|
| 338 |
|
| 339 |
-
# Press Enter to send (streaming) - update chatbot and clear input
|
| 340 |
msg.submit(
|
| 341 |
chat_send_stream,
|
| 342 |
-
inputs=[msg, chatbot,
|
| 343 |
outputs=[chatbot],
|
| 344 |
).then(lambda: "", outputs=[msg])
|
| 345 |
|
| 346 |
|
| 347 |
-
async def test_mcp_connection():
|
| 348 |
-
"""Test MCP connection on startup"""
|
| 349 |
-
try:
|
| 350 |
-
print("Testing MCP server connection...")
|
| 351 |
-
tools = await mcp.get_tools()
|
| 352 |
-
print(f"✅ Connected to MCP server. Found {len(tools)} tools.")
|
| 353 |
-
return True
|
| 354 |
-
except Exception as e:
|
| 355 |
-
print(f"❌ Failed to connect to MCP server: {e}")
|
| 356 |
-
return False
|
| 357 |
-
|
| 358 |
if __name__ == "__main__":
|
| 359 |
-
import asyncio
|
| 360 |
-
import warnings
|
| 361 |
-
|
| 362 |
-
# Suppress all warnings for cleaner output
|
| 363 |
-
warnings.filterwarnings("ignore")
|
| 364 |
-
|
| 365 |
-
# Test MCP connection on startup
|
| 366 |
-
try:
|
| 367 |
-
print(f"Attempting to connect to MCP server: {MCP_SERVER_URL}")
|
| 368 |
-
asyncio.run(test_mcp_connection())
|
| 369 |
-
except Exception as e:
|
| 370 |
-
print(f"MCP connection test failed: {e}")
|
| 371 |
-
print("Continuing anyway - connection will be retried during chat...")
|
| 372 |
-
|
| 373 |
-
# Launch the app
|
| 374 |
demo.queue().launch(
|
| 375 |
allowed_paths=["/tmp"],
|
| 376 |
-
ssr_mode=False,
|
| 377 |
show_error=True,
|
| 378 |
quiet=True,
|
| 379 |
)
|
|
|
|
| 1 |
"""
|
| 2 |
+
Gradio + OpenAI MCP Connector — Clean, Fast, Streaming, With File Upload
|
| 3 |
"""
|
| 4 |
|
|
|
|
| 5 |
import os
|
| 6 |
import shutil
|
|
|
|
|
|
|
|
|
|
| 7 |
import gradio as gr
|
|
|
|
|
|
|
| 8 |
from openai import OpenAI
|
| 9 |
|
| 10 |
+
# ---------------------
|
| 11 |
+
# CONFIGURATION
|
| 12 |
+
# ---------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
OPENAI_API_KEY = os.getenv("OPENAI_API_KEY")
|
| 14 |
+
MCP_SERVER_URL = "https://mcp-1st-birthday-auto-deployer.hf.space/gradio_api/mcp/"
|
| 15 |
+
MODEL_FAST = "gpt-5-mini" # for tool resolution
|
| 16 |
+
MODEL_STREAM = "gpt-5.1" # for final streaming reply
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
+
client = OpenAI(api_key=OPENAI_API_KEY)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
+
SYSTEM_PROMPT = """
|
| 21 |
+
You are a fast MLOps assistant with access to remote MCP tools.
|
| 22 |
+
Use tools only when necessary.
|
| 23 |
+
Keep reasoning effort LOW for speed.
|
| 24 |
+
After tools run, summarize clearly and concisely.
|
| 25 |
+
"""
|
| 26 |
|
| 27 |
+
# ---------------------
|
| 28 |
+
# NATIVE MCP CONNECTOR
|
| 29 |
+
# ---------------------
|
| 30 |
+
TOOLS = [
|
| 31 |
+
{
|
| 32 |
+
"type": "mcp",
|
| 33 |
+
"server_label": "deploy_tools",
|
| 34 |
+
"server_url": MCP_SERVER_URL,
|
| 35 |
+
# transport auto-detected; HF space supports HTTP
|
| 36 |
+
}
|
| 37 |
+
]
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
# ---------------------
|
| 41 |
+
# FILE UPLOAD HANDLER
|
| 42 |
+
# ---------------------
|
| 43 |
def handle_upload(file_obj, request: gr.Request):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 44 |
if file_obj is None:
|
| 45 |
+
return None
|
| 46 |
|
| 47 |
+
# Ensure file is in a stable path
|
| 48 |
local_path = file_obj.name
|
|
|
|
|
|
|
| 49 |
stable_path = os.path.join("/tmp", os.path.basename(local_path))
|
| 50 |
try:
|
| 51 |
shutil.copy(local_path, stable_path)
|
| 52 |
local_path = stable_path
|
| 53 |
except Exception:
|
|
|
|
| 54 |
pass
|
| 55 |
|
| 56 |
+
# Build public Gradio URL
|
| 57 |
+
base = str(request.base_url).rstrip("/")
|
| 58 |
+
return f"{base}/gradio_api/file={local_path}"
|
|
|
|
|
|
|
| 59 |
|
| 60 |
|
| 61 |
+
# ---------------------
|
| 62 |
+
# MAIN CHAT HANDLER
|
| 63 |
+
# ---------------------
|
| 64 |
+
def chat_send_stream(user_msg, history, file_url):
|
| 65 |
"""
|
| 66 |
+
2-phase pipeline:
|
| 67 |
+
PHASE 1 ➜ Non-streaming tool resolution using gpt-5-mini
|
| 68 |
+
PHASE 2 ➜ Streaming final output using gpt-5
|
| 69 |
"""
|
| 70 |
+
|
| 71 |
if history is None:
|
| 72 |
history = []
|
| 73 |
|
| 74 |
+
# Build message history for OpenAI
|
| 75 |
+
messages = [{"role": "system", "content": SYSTEM_PROMPT}]
|
| 76 |
+
for u, a in history:
|
| 77 |
+
messages.append({"role": "user", "content": u})
|
| 78 |
+
if a:
|
| 79 |
+
messages.append({"role": "assistant", "content": a})
|
| 80 |
+
|
| 81 |
+
# Inject file context
|
| 82 |
+
if file_url:
|
| 83 |
+
user_msg_full = f"[Uploaded CSV file: {file_url}]\n\n{user_msg}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
else:
|
| 85 |
+
user_msg_full = user_msg
|
| 86 |
+
|
| 87 |
+
messages.append({"role": "user", "content": user_msg_full})
|
| 88 |
+
|
| 89 |
+
# -----------------------------
|
| 90 |
+
# PHASE 1 — TOOL RESOLUTION
|
| 91 |
+
# -----------------------------
|
| 92 |
+
tool_phase = client.responses.create(
|
| 93 |
+
model=MODEL_FAST,
|
| 94 |
+
reasoning={"effort": "low"},
|
| 95 |
+
tools=TOOLS,
|
| 96 |
+
instructions=SYSTEM_PROMPT,
|
| 97 |
+
input=messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 98 |
)
|
| 99 |
|
| 100 |
+
tool_feedback = []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
+
# Detect tool calls (if any)
|
| 103 |
+
if tool_phase.output:
|
| 104 |
+
for item in tool_phase.output:
|
| 105 |
+
if item.type == "tool_call":
|
| 106 |
+
tool_feedback.append(f"🛠️ Used tool `{item.name}`.")
|
| 107 |
+
elif item.type == "tool_result":
|
| 108 |
+
tool_feedback.append(f"{item.content}")
|
| 109 |
|
| 110 |
+
if not tool_feedback:
|
| 111 |
+
tool_feedback.append("No MCP tools needed.")
|
| 112 |
+
|
| 113 |
+
else:
|
| 114 |
+
tool_feedback.append("No MCP tools needed.")
|
| 115 |
+
|
| 116 |
+
# Append tool results to messages before final generation
|
| 117 |
+
messages.append({"role": "assistant", "content": "\n".join(tool_feedback)})
|
| 118 |
+
|
| 119 |
+
# Yield intermediate tool feedback to the UI
|
| 120 |
+
history.append((user_msg, "\n".join(tool_feedback)))
|
| 121 |
+
yield history
|
| 122 |
+
|
| 123 |
+
# -----------------------------
|
| 124 |
+
# PHASE 2 — STREAMING FINAL ANSWER
|
| 125 |
+
# -----------------------------
|
| 126 |
+
stream = client.responses.create(
|
| 127 |
+
model=MODEL_STREAM,
|
| 128 |
+
reasoning={"effort": "low"},
|
| 129 |
+
instructions=SYSTEM_PROMPT,
|
| 130 |
+
input=messages,
|
| 131 |
+
stream=True,
|
| 132 |
)
|
| 133 |
|
| 134 |
+
final_text = ""
|
| 135 |
+
for ev in stream:
|
| 136 |
+
if ev.type == "response.output_text.delta":
|
| 137 |
+
final_text += ev.delta
|
| 138 |
+
history[-1] = (user_msg, "\n".join(tool_feedback) + "\n\n" + final_text)
|
| 139 |
+
yield history
|
| 140 |
+
|
| 141 |
+
elif ev.type == "response.completed":
|
| 142 |
+
break
|
| 143 |
+
|
| 144 |
+
stream.close()
|
| 145 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
| 147 |
+
# ---------------------
|
| 148 |
+
# GRADIO UI
|
| 149 |
+
# ---------------------
|
| 150 |
+
with gr.Blocks(title="MCP + GPT-5 — Fast Streaming MLOps Agent") as demo:
|
| 151 |
+
gr.Markdown("""
|
| 152 |
+
# 🚀 AI-Driven MLOps Agent (MCP-Powered)
|
| 153 |
+
- Upload a CSV file
|
| 154 |
+
- Tools resolve instantly
|
| 155 |
+
- Final answer streams smoothly
|
| 156 |
+
""")
|
| 157 |
+
|
| 158 |
+
file_state = gr.State()
|
| 159 |
+
|
| 160 |
+
uploader = gr.File(label="Upload CSV file", type="filepath", file_count="single")
|
| 161 |
+
|
| 162 |
+
uploader.change(handle_upload, inputs=[uploader], outputs=[file_state])
|
| 163 |
+
|
| 164 |
+
chatbot = gr.Chatbot(label="Chat")
|
| 165 |
+
msg = gr.Textbox(label="Message")
|
| 166 |
+
send = gr.Button("Send")
|
| 167 |
+
|
| 168 |
send.click(
|
| 169 |
chat_send_stream,
|
| 170 |
+
inputs=[msg, chatbot, file_state],
|
| 171 |
outputs=[chatbot],
|
| 172 |
).then(lambda: "", outputs=[msg])
|
| 173 |
|
|
|
|
| 174 |
msg.submit(
|
| 175 |
chat_send_stream,
|
| 176 |
+
inputs=[msg, chatbot, file_state],
|
| 177 |
outputs=[chatbot],
|
| 178 |
).then(lambda: "", outputs=[msg])
|
| 179 |
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
if __name__ == "__main__":
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
demo.queue().launch(
|
| 183 |
allowed_paths=["/tmp"],
|
|
|
|
| 184 |
show_error=True,
|
| 185 |
quiet=True,
|
| 186 |
)
|
todolist.md
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
- [] Diable message and send button while the final reosne is not recived.
|
| 2 |
+
- [] reduce the thinking preces in tools secaltiona dn then analysing the dataset.
|
| 3 |
+
- [] clear the message when user end the message.
|
| 4 |
+
- [] model is not taking an acocunt of previous ocnverations.
|
| 5 |
+
- [] add more infor to the readme
|