Spaces:
Running
on
Zero
Running
on
Zero
Add Collection Analysis & Untapped.gg Support
Browse files## 📦 Collection Analysis Feature
This PR introduces comprehensive support for analyzing MTG collections, including:
- **Untapped.gg Support**: Native parsing of Untapped.gg CSV exports (`Id #`, `Name`, `Set`, `Color`, `Rarity`, `Quantity`).
- **Collection Analysis**: Immediate analysis of uploaded collections, providing:
- Rarity distribution
- Color breakdown
- Set distribution
- Completion score
- **UI Updates**: Enhanced Collection Upload tab with analysis results.
This feature allows users to understand their collection composition and identify gaps, complementing the existing deck analysis tools.
- app.py +0 -0
- src/models/deck.py +139 -125
- src/services/collection_analyzer.py +83 -0
- src/utils/csv_parser.py +339 -274
app.py
CHANGED
|
The diff for this file is too large to render.
See raw diff
|
|
|
src/models/deck.py
CHANGED
|
@@ -1,125 +1,139 @@
|
|
| 1 |
-
"""Deck and card data models."""
|
| 2 |
-
|
| 3 |
-
from datetime import datetime
|
| 4 |
-
from typing import List, Dict, Optional
|
| 5 |
-
from dataclasses import dataclass, field
|
| 6 |
-
from pydantic import BaseModel, Field
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
class Card(BaseModel):
|
| 10 |
-
"""Represents a single Magic: The Gathering card."""
|
| 11 |
-
|
| 12 |
-
name: str
|
| 13 |
-
quantity: int
|
| 14 |
-
card_type: str # Creature, Instant, Sorcery, Enchantment, Artifact, Land, Planeswalker
|
| 15 |
-
mana_cost: str # e.g., "2UU", "GG", "1"
|
| 16 |
-
cmc: float = 0.0 # Converted mana cost
|
| 17 |
-
colors: List[str] = Field(default_factory=list) # W, U, B, R, G
|
| 18 |
-
rarity: Optional[str] = None # Common, Uncommon, Rare, Mythic
|
| 19 |
-
set_code: Optional[str] = None
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
class Deck(BaseModel):
|
| 23 |
-
"""Represents a complete MTG Arena deck."""
|
| 24 |
-
|
| 25 |
-
name: str
|
| 26 |
-
format: str = "Standard" # Standard, Historic, Explorer, etc.
|
| 27 |
-
mainboard: List[Card]
|
| 28 |
-
sideboard: List[Card] = Field(default_factory=list)
|
| 29 |
-
commander: Optional[Card] = None
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
class ManaCurve(BaseModel):
|
| 33 |
-
"""Mana curve analysis for a deck."""
|
| 34 |
-
|
| 35 |
-
distribution: Dict[int, int] # CMC -> count
|
| 36 |
-
average_cmc: float
|
| 37 |
-
median_cmc: float
|
| 38 |
-
curve_score: float # 0-100 rating
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
class CardSynergy(BaseModel):
|
| 42 |
-
"""Represents synergy between two cards."""
|
| 43 |
-
|
| 44 |
-
card1: str
|
| 45 |
-
card2: str
|
| 46 |
-
synergy_type: str # combo, support, anti-synergy
|
| 47 |
-
strength: float # 0-100
|
| 48 |
-
explanation: str
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
class MetaMatchup(BaseModel):
|
| 52 |
-
"""Meta matchup analysis."""
|
| 53 |
-
|
| 54 |
-
archetype: str
|
| 55 |
-
win_rate: float
|
| 56 |
-
favorable: bool
|
| 57 |
-
key_cards: List[str]
|
| 58 |
-
sideboard_suggestions: List[str]
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
class DeckAnalysis(BaseModel):
|
| 62 |
-
"""Complete deck analysis result."""
|
| 63 |
-
|
| 64 |
-
deck_name: str
|
| 65 |
-
mana_curve: ManaCurve
|
| 66 |
-
color_distribution: Dict[str, int]
|
| 67 |
-
card_types: Dict[str, int]
|
| 68 |
-
synergies: List[CardSynergy]
|
| 69 |
-
meta_matchups: List[MetaMatchup]
|
| 70 |
-
strengths: List[str]
|
| 71 |
-
weaknesses: List[str]
|
| 72 |
-
overall_score: float # 0-100
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
class DeckSuggestion(BaseModel):
|
| 76 |
-
"""Deck optimization suggestion."""
|
| 77 |
-
|
| 78 |
-
type: str # add, remove, replace
|
| 79 |
-
card_name: str
|
| 80 |
-
quantity: int = 1
|
| 81 |
-
reason: str
|
| 82 |
-
impact_score: float # 0-100
|
| 83 |
-
replacement_for: Optional[str] = None
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
class OptimizedDeck(BaseModel):
|
| 87 |
-
"""Optimized deck with suggestions."""
|
| 88 |
-
|
| 89 |
-
original_deck: Deck
|
| 90 |
-
suggestions: List[DeckSuggestion]
|
| 91 |
-
predicted_win_rate: float
|
| 92 |
-
confidence: float
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
@dataclass
|
| 96 |
-
class Collection:
|
| 97 |
-
"""Represents a card collection (not a deck)."""
|
| 98 |
-
|
| 99 |
-
id: Optional[int] = None
|
| 100 |
-
name: str = "Imported Collection"
|
| 101 |
-
cards: List[Card] = field(default_factory=list)
|
| 102 |
-
total_cards: int = 0
|
| 103 |
-
unique_cards: int = 0
|
| 104 |
-
created_at: Optional[datetime] = None
|
| 105 |
-
|
| 106 |
-
def __post_init__(self):
|
| 107 |
-
if not self.total_cards:
|
| 108 |
-
self.total_cards = sum(card.quantity for card in self.cards)
|
| 109 |
-
if not self.unique_cards:
|
| 110 |
-
self.unique_cards = len(self.cards)
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
@dataclass
|
| 114 |
-
class CollectionProcessingResult:
|
| 115 |
-
"""Result of processing a collection CSV."""
|
| 116 |
-
|
| 117 |
-
collection_id: Optional[int] = None
|
| 118 |
-
total_cards: int = 0
|
| 119 |
-
unique_cards: int = 0
|
| 120 |
-
total_quantity: int = 0
|
| 121 |
-
chunks_processed: int = 0
|
| 122 |
-
chunks_failed: int = 0
|
| 123 |
-
failed_rows: List[int] = field(default_factory=list)
|
| 124 |
-
processing_time_seconds: float = 0.0
|
| 125 |
-
status: str = "pending" # 'complete', 'partial', 'failed'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Deck and card data models."""
|
| 2 |
+
|
| 3 |
+
from datetime import datetime
|
| 4 |
+
from typing import List, Dict, Optional
|
| 5 |
+
from dataclasses import dataclass, field
|
| 6 |
+
from pydantic import BaseModel, Field
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
class Card(BaseModel):
|
| 10 |
+
"""Represents a single Magic: The Gathering card."""
|
| 11 |
+
|
| 12 |
+
name: str
|
| 13 |
+
quantity: int
|
| 14 |
+
card_type: str # Creature, Instant, Sorcery, Enchantment, Artifact, Land, Planeswalker
|
| 15 |
+
mana_cost: str # e.g., "2UU", "GG", "1"
|
| 16 |
+
cmc: float = 0.0 # Converted mana cost
|
| 17 |
+
colors: List[str] = Field(default_factory=list) # W, U, B, R, G
|
| 18 |
+
rarity: Optional[str] = None # Common, Uncommon, Rare, Mythic
|
| 19 |
+
set_code: Optional[str] = None
|
| 20 |
+
|
| 21 |
+
|
| 22 |
+
class Deck(BaseModel):
|
| 23 |
+
"""Represents a complete MTG Arena deck."""
|
| 24 |
+
|
| 25 |
+
name: str
|
| 26 |
+
format: str = "Standard" # Standard, Historic, Explorer, etc.
|
| 27 |
+
mainboard: List[Card]
|
| 28 |
+
sideboard: List[Card] = Field(default_factory=list)
|
| 29 |
+
commander: Optional[Card] = None
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
class ManaCurve(BaseModel):
|
| 33 |
+
"""Mana curve analysis for a deck."""
|
| 34 |
+
|
| 35 |
+
distribution: Dict[int, int] # CMC -> count
|
| 36 |
+
average_cmc: float
|
| 37 |
+
median_cmc: float
|
| 38 |
+
curve_score: float # 0-100 rating
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
class CardSynergy(BaseModel):
|
| 42 |
+
"""Represents synergy between two cards."""
|
| 43 |
+
|
| 44 |
+
card1: str
|
| 45 |
+
card2: str
|
| 46 |
+
synergy_type: str # combo, support, anti-synergy
|
| 47 |
+
strength: float # 0-100
|
| 48 |
+
explanation: str
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
class MetaMatchup(BaseModel):
|
| 52 |
+
"""Meta matchup analysis."""
|
| 53 |
+
|
| 54 |
+
archetype: str
|
| 55 |
+
win_rate: float
|
| 56 |
+
favorable: bool
|
| 57 |
+
key_cards: List[str]
|
| 58 |
+
sideboard_suggestions: List[str]
|
| 59 |
+
|
| 60 |
+
|
| 61 |
+
class DeckAnalysis(BaseModel):
|
| 62 |
+
"""Complete deck analysis result."""
|
| 63 |
+
|
| 64 |
+
deck_name: str
|
| 65 |
+
mana_curve: ManaCurve
|
| 66 |
+
color_distribution: Dict[str, int]
|
| 67 |
+
card_types: Dict[str, int]
|
| 68 |
+
synergies: List[CardSynergy]
|
| 69 |
+
meta_matchups: List[MetaMatchup]
|
| 70 |
+
strengths: List[str]
|
| 71 |
+
weaknesses: List[str]
|
| 72 |
+
overall_score: float # 0-100
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
class DeckSuggestion(BaseModel):
|
| 76 |
+
"""Deck optimization suggestion."""
|
| 77 |
+
|
| 78 |
+
type: str # add, remove, replace
|
| 79 |
+
card_name: str
|
| 80 |
+
quantity: int = 1
|
| 81 |
+
reason: str
|
| 82 |
+
impact_score: float # 0-100
|
| 83 |
+
replacement_for: Optional[str] = None
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
class OptimizedDeck(BaseModel):
|
| 87 |
+
"""Optimized deck with suggestions."""
|
| 88 |
+
|
| 89 |
+
original_deck: Deck
|
| 90 |
+
suggestions: List[DeckSuggestion]
|
| 91 |
+
predicted_win_rate: float
|
| 92 |
+
confidence: float
|
| 93 |
+
|
| 94 |
+
|
| 95 |
+
@dataclass
|
| 96 |
+
class Collection:
|
| 97 |
+
"""Represents a card collection (not a deck)."""
|
| 98 |
+
|
| 99 |
+
id: Optional[int] = None
|
| 100 |
+
name: str = "Imported Collection"
|
| 101 |
+
cards: List[Card] = field(default_factory=list)
|
| 102 |
+
total_cards: int = 0
|
| 103 |
+
unique_cards: int = 0
|
| 104 |
+
created_at: Optional[datetime] = None
|
| 105 |
+
|
| 106 |
+
def __post_init__(self):
|
| 107 |
+
if not self.total_cards:
|
| 108 |
+
self.total_cards = sum(card.quantity for card in self.cards)
|
| 109 |
+
if not self.unique_cards:
|
| 110 |
+
self.unique_cards = len(self.cards)
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
@dataclass
|
| 114 |
+
class CollectionProcessingResult:
|
| 115 |
+
"""Result of processing a collection CSV."""
|
| 116 |
+
|
| 117 |
+
collection_id: Optional[int] = None
|
| 118 |
+
total_cards: int = 0
|
| 119 |
+
unique_cards: int = 0
|
| 120 |
+
total_quantity: int = 0
|
| 121 |
+
chunks_processed: int = 0
|
| 122 |
+
chunks_failed: int = 0
|
| 123 |
+
failed_rows: List[int] = field(default_factory=list)
|
| 124 |
+
processing_time_seconds: float = 0.0
|
| 125 |
+
status: str = "pending" # 'complete', 'partial', 'failed'
|
| 126 |
+
|
| 127 |
+
|
| 128 |
+
@dataclass
|
| 129 |
+
class CollectionAnalysis:
|
| 130 |
+
"""Analysis result for a card collection."""
|
| 131 |
+
|
| 132 |
+
total_cards: int
|
| 133 |
+
unique_cards: int
|
| 134 |
+
total_value: float = 0.0 # Estimated value
|
| 135 |
+
rarity_distribution: Dict[str, int] = field(default_factory=dict)
|
| 136 |
+
color_distribution: Dict[str, int] = field(default_factory=dict)
|
| 137 |
+
set_distribution: Dict[str, int] = field(default_factory=dict)
|
| 138 |
+
top_cards: List[Card] = field(default_factory=list)
|
| 139 |
+
completion_score: float = 0.0 # 0-100 score based on staple coverage
|
src/services/collection_analyzer.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""Service for analyzing card collections."""
|
| 2 |
+
|
| 3 |
+
import logging
|
| 4 |
+
from collections import Counter
|
| 5 |
+
from typing import List, Dict
|
| 6 |
+
|
| 7 |
+
from ..models.deck import Card, Collection, CollectionAnalysis
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class CollectionAnalyzer:
|
| 13 |
+
"""Analyzes card collections to generate statistics and insights."""
|
| 14 |
+
|
| 15 |
+
async def analyze_collection(self, collection: Collection) -> CollectionAnalysis:
|
| 16 |
+
"""
|
| 17 |
+
Perform comprehensive analysis on a card collection.
|
| 18 |
+
|
| 19 |
+
Args:
|
| 20 |
+
collection: The collection to analyze
|
| 21 |
+
|
| 22 |
+
Returns:
|
| 23 |
+
CollectionAnalysis object with statistics
|
| 24 |
+
"""
|
| 25 |
+
if not collection or not collection.cards:
|
| 26 |
+
return CollectionAnalysis(total_cards=0, unique_cards=0)
|
| 27 |
+
|
| 28 |
+
cards = collection.cards
|
| 29 |
+
total_cards = sum(c.quantity for c in cards)
|
| 30 |
+
unique_cards = len(cards)
|
| 31 |
+
|
| 32 |
+
# Calculate distributions
|
| 33 |
+
rarity_dist = Counter()
|
| 34 |
+
color_dist = Counter()
|
| 35 |
+
set_dist = Counter()
|
| 36 |
+
|
| 37 |
+
# Track top cards (e.g., by rarity or utility - simplified here)
|
| 38 |
+
# In a real app, we'd check against a "staples" list
|
| 39 |
+
mythics = []
|
| 40 |
+
rares = []
|
| 41 |
+
|
| 42 |
+
for card in cards:
|
| 43 |
+
# Rarity
|
| 44 |
+
if card.rarity:
|
| 45 |
+
rarity_dist[card.rarity] += card.quantity
|
| 46 |
+
if card.rarity.lower() == 'mythic':
|
| 47 |
+
mythics.append(card)
|
| 48 |
+
elif card.rarity.lower() == 'rare':
|
| 49 |
+
rares.append(card)
|
| 50 |
+
else:
|
| 51 |
+
rarity_dist['Unknown'] += card.quantity
|
| 52 |
+
|
| 53 |
+
# Colors
|
| 54 |
+
if card.colors:
|
| 55 |
+
for color in card.colors:
|
| 56 |
+
color_dist[color] += card.quantity
|
| 57 |
+
elif card.card_type and 'Land' in card.card_type:
|
| 58 |
+
color_dist['Lands'] += card.quantity
|
| 59 |
+
else:
|
| 60 |
+
color_dist['Colorless'] += card.quantity
|
| 61 |
+
|
| 62 |
+
# Sets
|
| 63 |
+
if card.set_code:
|
| 64 |
+
set_dist[card.set_code] += card.quantity
|
| 65 |
+
|
| 66 |
+
# Sort top cards by quantity (simplified "top" metric)
|
| 67 |
+
# Prioritize Mythics and Rares
|
| 68 |
+
top_cards = sorted(mythics + rares, key=lambda c: c.quantity, reverse=True)[:20]
|
| 69 |
+
|
| 70 |
+
# Calculate a simple completion score (placeholder logic)
|
| 71 |
+
# Real logic would compare against meta decks
|
| 72 |
+
completion_score = min(100.0, (unique_cards / 2000) * 100) # Arbitrary baseline
|
| 73 |
+
|
| 74 |
+
return CollectionAnalysis(
|
| 75 |
+
total_cards=total_cards,
|
| 76 |
+
unique_cards=unique_cards,
|
| 77 |
+
total_value=0.0, # Would need price service integration
|
| 78 |
+
rarity_distribution=dict(rarity_dist),
|
| 79 |
+
color_distribution=dict(color_dist),
|
| 80 |
+
set_distribution=dict(set_dist),
|
| 81 |
+
top_cards=top_cards,
|
| 82 |
+
completion_score=round(completion_score, 1)
|
| 83 |
+
)
|
src/utils/csv_parser.py
CHANGED
|
@@ -1,274 +1,339 @@
|
|
| 1 |
-
"""CSV parser for MTG Arena deck exports."""
|
| 2 |
-
|
| 3 |
-
import gc
|
| 4 |
-
import re
|
| 5 |
-
import logging
|
| 6 |
-
from typing import List, Tuple, Generator
|
| 7 |
-
from io import StringIO
|
| 8 |
-
import pandas as pd
|
| 9 |
-
|
| 10 |
-
from ..models.deck import Card, Deck
|
| 11 |
-
from .mana_calculator import calculate_cmc, parse_mana_cost, extract_colors
|
| 12 |
-
|
| 13 |
-
logger = logging.getLogger(__name__)
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
def parse_deck_string(deck_string: str) -> Deck:
|
| 17 |
-
"""
|
| 18 |
-
Parse MTG Arena deck format string.
|
| 19 |
-
|
| 20 |
-
Format examples:
|
| 21 |
-
4 Lightning Bolt (M11) 146
|
| 22 |
-
2 Counterspell (MH2) 267
|
| 23 |
-
20 Island (ZNR) 381
|
| 24 |
-
"""
|
| 25 |
-
lines = deck_string.strip().split('\n')
|
| 26 |
-
mainboard = []
|
| 27 |
-
sideboard = []
|
| 28 |
-
current_section = mainboard
|
| 29 |
-
|
| 30 |
-
for line in lines:
|
| 31 |
-
line = line.strip()
|
| 32 |
-
if not line:
|
| 33 |
-
continue
|
| 34 |
-
|
| 35 |
-
# Check for sideboard marker
|
| 36 |
-
if line.lower() in ['sideboard', 'sideboard:']:
|
| 37 |
-
current_section = sideboard
|
| 38 |
-
continue
|
| 39 |
-
|
| 40 |
-
# Parse card line: "4 Card Name (SET) 123"
|
| 41 |
-
# Split by parentheses to avoid ReDoS vulnerability
|
| 42 |
-
paren_match = re.search(r'\(([A-Z0-9]+)\)\s+(\d+)$', line)
|
| 43 |
-
if paren_match:
|
| 44 |
-
# Extract quantity and name from beginning
|
| 45 |
-
prefix = line[:paren_match.start()].strip()
|
| 46 |
-
# Use simple split to avoid ReDoS
|
| 47 |
-
parts = prefix.split(None, 1) # Split on first whitespace
|
| 48 |
-
if len(parts) == 2 and parts[0].isdigit():
|
| 49 |
-
quantity = int(parts[0])
|
| 50 |
-
card_name = parts[1].strip()
|
| 51 |
-
set_code = paren_match.group(1)
|
| 52 |
-
|
| 53 |
-
# Determine card type and mana cost (simplified - would need card database)
|
| 54 |
-
card_type = determine_card_type(card_name)
|
| 55 |
-
# WARNING: Text format parsing limitation - mana cost is not available
|
| 56 |
-
# This will result in CMC=0 and no colors for all non-land cards,
|
| 57 |
-
# which significantly affects deck analysis accuracy.
|
| 58 |
-
# Use CSV format for accurate mana curve and color analysis.
|
| 59 |
-
mana_cost = "" # Would need card database lookup
|
| 60 |
-
|
| 61 |
-
card = Card(
|
| 62 |
-
name=card_name,
|
| 63 |
-
quantity=quantity,
|
| 64 |
-
card_type=card_type,
|
| 65 |
-
mana_cost=mana_cost,
|
| 66 |
-
cmc=calculate_cmc(mana_cost),
|
| 67 |
-
colors=extract_colors(mana_cost),
|
| 68 |
-
set_code=set_code
|
| 69 |
-
)
|
| 70 |
-
current_section.append(card)
|
| 71 |
-
|
| 72 |
-
return Deck(
|
| 73 |
-
name="Imported Deck",
|
| 74 |
-
mainboard=mainboard,
|
| 75 |
-
sideboard=sideboard
|
| 76 |
-
)
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
def parse_arena_csv(csv_content: str) -> Deck:
|
| 80 |
-
"""
|
| 81 |
-
Parse CSV export from Steam MTG Arena.
|
| 82 |
-
|
| 83 |
-
Expected CSV format:
|
| 84 |
-
Quantity,Name,Set,Collector Number,Type,Mana Cost,CMC,Colors,Rarity
|
| 85 |
-
"""
|
| 86 |
-
# Read CSV
|
| 87 |
-
df = pd.read_csv(StringIO(csv_content))
|
| 88 |
-
|
| 89 |
-
# Normalize column names
|
| 90 |
-
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
|
| 91 |
-
|
| 92 |
-
mainboard = []
|
| 93 |
-
sideboard = []
|
| 94 |
-
|
| 95 |
-
for _, row in df.iterrows():
|
| 96 |
-
quantity = int(row.get('quantity', 1))
|
| 97 |
-
name = str(row.get('name', ''))
|
| 98 |
-
set_code = str(row.get('set', '')) if 'set' in row else None
|
| 99 |
-
card_type = str(row.get('type', 'Unknown'))
|
| 100 |
-
mana_cost = str(row.get('mana_cost', ''))
|
| 101 |
-
|
| 102 |
-
# Calculate CMC if not provided
|
| 103 |
-
if 'cmc' in row:
|
| 104 |
-
cmc = float(row['cmc'])
|
| 105 |
-
else:
|
| 106 |
-
cmc = calculate_cmc(mana_cost)
|
| 107 |
-
|
| 108 |
-
# Extract colors if not provided
|
| 109 |
-
if 'colors' in row and pd.notna(row['colors']):
|
| 110 |
-
colors = [c.strip() for c in str(row['colors']).split(',')]
|
| 111 |
-
else:
|
| 112 |
-
colors = extract_colors(mana_cost)
|
| 113 |
-
|
| 114 |
-
rarity = str(row.get('rarity', '')) if 'rarity' in row else None
|
| 115 |
-
is_sideboard = row.get('sideboard', False) if 'sideboard' in row else False
|
| 116 |
-
|
| 117 |
-
card = Card(
|
| 118 |
-
name=name,
|
| 119 |
-
quantity=quantity,
|
| 120 |
-
card_type=card_type,
|
| 121 |
-
mana_cost=mana_cost,
|
| 122 |
-
cmc=cmc,
|
| 123 |
-
colors=colors,
|
| 124 |
-
rarity=rarity,
|
| 125 |
-
set_code=set_code
|
| 126 |
-
)
|
| 127 |
-
|
| 128 |
-
if is_sideboard:
|
| 129 |
-
sideboard.append(card)
|
| 130 |
-
else:
|
| 131 |
-
mainboard.append(card)
|
| 132 |
-
|
| 133 |
-
return Deck(
|
| 134 |
-
name="CSV Import",
|
| 135 |
-
mainboard=mainboard,
|
| 136 |
-
sideboard=sideboard
|
| 137 |
-
)
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
def determine_card_type(card_name: str) -> str:
|
| 141 |
-
"""Determine card type based on name (simplified heuristic)."""
|
| 142 |
-
# This is a simplified version - in production would use card database
|
| 143 |
-
name_lower = card_name.lower()
|
| 144 |
-
|
| 145 |
-
if any(land in name_lower for land in ['island', 'mountain', 'forest', 'plains', 'swamp']):
|
| 146 |
-
return "Land"
|
| 147 |
-
|
| 148 |
-
# Default to Unknown - should be looked up from card database
|
| 149 |
-
return "Unknown"
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
def count_csv_rows(filepath: str) -> int:
|
| 153 |
-
"""
|
| 154 |
-
Efficiently count rows in CSV without loading into memory.
|
| 155 |
-
|
| 156 |
-
Args:
|
| 157 |
-
filepath: Path to the CSV file
|
| 158 |
-
|
| 159 |
-
Returns:
|
| 160 |
-
Number of data rows (excluding header)
|
| 161 |
-
"""
|
| 162 |
-
with open(filepath, 'r', encoding='utf-8') as f:
|
| 163 |
-
# Count lines, subtract 1 for header
|
| 164 |
-
return sum(1 for _ in f) - 1
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
def _parse_card_row(row: pd.Series) -> Card:
|
| 168 |
-
"""
|
| 169 |
-
Parse a single CSV row into a Card object.
|
| 170 |
-
|
| 171 |
-
Args:
|
| 172 |
-
row: pandas Series with normalized column names
|
| 173 |
-
|
| 174 |
-
Returns:
|
| 175 |
-
Card object
|
| 176 |
-
|
| 177 |
-
Raises:
|
| 178 |
-
ValueError: If required fields are missing or invalid
|
| 179 |
-
"""
|
| 180 |
-
# Handle quantity - default to 1 if missing
|
| 181 |
-
quantity = int(row.get('quantity', 1) or 1)
|
| 182 |
-
|
| 183 |
-
# Get name - required field
|
| 184 |
-
name = str(row.get('name', '')).strip()
|
| 185 |
-
if not name:
|
| 186 |
-
raise ValueError("Card name is required")
|
| 187 |
-
|
| 188 |
-
# Parse CMC - handle various formats
|
| 189 |
-
cmc_val = row.get('cmc', 0)
|
| 190 |
-
try:
|
| 191 |
-
cmc = int(float(cmc_val)) if pd.notna(cmc_val) else 0
|
| 192 |
-
except (ValueError, TypeError):
|
| 193 |
-
cmc = 0
|
| 194 |
-
|
| 195 |
-
# Parse colors - handle string or list
|
| 196 |
-
colors_raw = row.get('colors', '')
|
| 197 |
-
if pd.isna(colors_raw):
|
| 198 |
-
colors = []
|
| 199 |
-
elif isinstance(colors_raw, str):
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
|
| 237 |
-
|
| 238 |
-
|
| 239 |
-
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
|
| 246 |
-
|
| 247 |
-
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""CSV parser for MTG Arena deck exports."""
|
| 2 |
+
|
| 3 |
+
import gc
|
| 4 |
+
import re
|
| 5 |
+
import logging
|
| 6 |
+
from typing import List, Tuple, Generator
|
| 7 |
+
from io import StringIO
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
from ..models.deck import Card, Deck
|
| 11 |
+
from .mana_calculator import calculate_cmc, parse_mana_cost, extract_colors
|
| 12 |
+
|
| 13 |
+
logger = logging.getLogger(__name__)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
def parse_deck_string(deck_string: str) -> Deck:
|
| 17 |
+
"""
|
| 18 |
+
Parse MTG Arena deck format string.
|
| 19 |
+
|
| 20 |
+
Format examples:
|
| 21 |
+
4 Lightning Bolt (M11) 146
|
| 22 |
+
2 Counterspell (MH2) 267
|
| 23 |
+
20 Island (ZNR) 381
|
| 24 |
+
"""
|
| 25 |
+
lines = deck_string.strip().split('\n')
|
| 26 |
+
mainboard = []
|
| 27 |
+
sideboard = []
|
| 28 |
+
current_section = mainboard
|
| 29 |
+
|
| 30 |
+
for line in lines:
|
| 31 |
+
line = line.strip()
|
| 32 |
+
if not line:
|
| 33 |
+
continue
|
| 34 |
+
|
| 35 |
+
# Check for sideboard marker
|
| 36 |
+
if line.lower() in ['sideboard', 'sideboard:']:
|
| 37 |
+
current_section = sideboard
|
| 38 |
+
continue
|
| 39 |
+
|
| 40 |
+
# Parse card line: "4 Card Name (SET) 123"
|
| 41 |
+
# Split by parentheses to avoid ReDoS vulnerability
|
| 42 |
+
paren_match = re.search(r'\(([A-Z0-9]+)\)\s+(\d+)$', line)
|
| 43 |
+
if paren_match:
|
| 44 |
+
# Extract quantity and name from beginning
|
| 45 |
+
prefix = line[:paren_match.start()].strip()
|
| 46 |
+
# Use simple split to avoid ReDoS
|
| 47 |
+
parts = prefix.split(None, 1) # Split on first whitespace
|
| 48 |
+
if len(parts) == 2 and parts[0].isdigit():
|
| 49 |
+
quantity = int(parts[0])
|
| 50 |
+
card_name = parts[1].strip()
|
| 51 |
+
set_code = paren_match.group(1)
|
| 52 |
+
|
| 53 |
+
# Determine card type and mana cost (simplified - would need card database)
|
| 54 |
+
card_type = determine_card_type(card_name)
|
| 55 |
+
# WARNING: Text format parsing limitation - mana cost is not available
|
| 56 |
+
# This will result in CMC=0 and no colors for all non-land cards,
|
| 57 |
+
# which significantly affects deck analysis accuracy.
|
| 58 |
+
# Use CSV format for accurate mana curve and color analysis.
|
| 59 |
+
mana_cost = "" # Would need card database lookup
|
| 60 |
+
|
| 61 |
+
card = Card(
|
| 62 |
+
name=card_name,
|
| 63 |
+
quantity=quantity,
|
| 64 |
+
card_type=card_type,
|
| 65 |
+
mana_cost=mana_cost,
|
| 66 |
+
cmc=calculate_cmc(mana_cost),
|
| 67 |
+
colors=extract_colors(mana_cost),
|
| 68 |
+
set_code=set_code
|
| 69 |
+
)
|
| 70 |
+
current_section.append(card)
|
| 71 |
+
|
| 72 |
+
return Deck(
|
| 73 |
+
name="Imported Deck",
|
| 74 |
+
mainboard=mainboard,
|
| 75 |
+
sideboard=sideboard
|
| 76 |
+
)
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
def parse_arena_csv(csv_content: str) -> Deck:
|
| 80 |
+
"""
|
| 81 |
+
Parse CSV export from Steam MTG Arena.
|
| 82 |
+
|
| 83 |
+
Expected CSV format:
|
| 84 |
+
Quantity,Name,Set,Collector Number,Type,Mana Cost,CMC,Colors,Rarity
|
| 85 |
+
"""
|
| 86 |
+
# Read CSV
|
| 87 |
+
df = pd.read_csv(StringIO(csv_content))
|
| 88 |
+
|
| 89 |
+
# Normalize column names
|
| 90 |
+
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
|
| 91 |
+
|
| 92 |
+
mainboard = []
|
| 93 |
+
sideboard = []
|
| 94 |
+
|
| 95 |
+
for _, row in df.iterrows():
|
| 96 |
+
quantity = int(row.get('quantity', 1))
|
| 97 |
+
name = str(row.get('name', ''))
|
| 98 |
+
set_code = str(row.get('set', '')) if 'set' in row else None
|
| 99 |
+
card_type = str(row.get('type', 'Unknown'))
|
| 100 |
+
mana_cost = str(row.get('mana_cost', ''))
|
| 101 |
+
|
| 102 |
+
# Calculate CMC if not provided
|
| 103 |
+
if 'cmc' in row:
|
| 104 |
+
cmc = float(row['cmc'])
|
| 105 |
+
else:
|
| 106 |
+
cmc = calculate_cmc(mana_cost)
|
| 107 |
+
|
| 108 |
+
# Extract colors if not provided
|
| 109 |
+
if 'colors' in row and pd.notna(row['colors']):
|
| 110 |
+
colors = [c.strip() for c in str(row['colors']).split(',')]
|
| 111 |
+
else:
|
| 112 |
+
colors = extract_colors(mana_cost)
|
| 113 |
+
|
| 114 |
+
rarity = str(row.get('rarity', '')) if 'rarity' in row else None
|
| 115 |
+
is_sideboard = row.get('sideboard', False) if 'sideboard' in row else False
|
| 116 |
+
|
| 117 |
+
card = Card(
|
| 118 |
+
name=name,
|
| 119 |
+
quantity=quantity,
|
| 120 |
+
card_type=card_type,
|
| 121 |
+
mana_cost=mana_cost,
|
| 122 |
+
cmc=cmc,
|
| 123 |
+
colors=colors,
|
| 124 |
+
rarity=rarity,
|
| 125 |
+
set_code=set_code
|
| 126 |
+
)
|
| 127 |
+
|
| 128 |
+
if is_sideboard:
|
| 129 |
+
sideboard.append(card)
|
| 130 |
+
else:
|
| 131 |
+
mainboard.append(card)
|
| 132 |
+
|
| 133 |
+
return Deck(
|
| 134 |
+
name="CSV Import",
|
| 135 |
+
mainboard=mainboard,
|
| 136 |
+
sideboard=sideboard
|
| 137 |
+
)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
def determine_card_type(card_name: str) -> str:
|
| 141 |
+
"""Determine card type based on name (simplified heuristic)."""
|
| 142 |
+
# This is a simplified version - in production would use card database
|
| 143 |
+
name_lower = card_name.lower()
|
| 144 |
+
|
| 145 |
+
if any(land in name_lower for land in ['island', 'mountain', 'forest', 'plains', 'swamp']):
|
| 146 |
+
return "Land"
|
| 147 |
+
|
| 148 |
+
# Default to Unknown - should be looked up from card database
|
| 149 |
+
return "Unknown"
|
| 150 |
+
|
| 151 |
+
|
| 152 |
+
def count_csv_rows(filepath: str) -> int:
|
| 153 |
+
"""
|
| 154 |
+
Efficiently count rows in CSV without loading into memory.
|
| 155 |
+
|
| 156 |
+
Args:
|
| 157 |
+
filepath: Path to the CSV file
|
| 158 |
+
|
| 159 |
+
Returns:
|
| 160 |
+
Number of data rows (excluding header)
|
| 161 |
+
"""
|
| 162 |
+
with open(filepath, 'r', encoding='utf-8') as f:
|
| 163 |
+
# Count lines, subtract 1 for header
|
| 164 |
+
return sum(1 for _ in f) - 1
|
| 165 |
+
|
| 166 |
+
|
| 167 |
+
def _parse_card_row(row: pd.Series) -> Card:
|
| 168 |
+
"""
|
| 169 |
+
Parse a single CSV row into a Card object.
|
| 170 |
+
|
| 171 |
+
Args:
|
| 172 |
+
row: pandas Series with normalized column names
|
| 173 |
+
|
| 174 |
+
Returns:
|
| 175 |
+
Card object
|
| 176 |
+
|
| 177 |
+
Raises:
|
| 178 |
+
ValueError: If required fields are missing or invalid
|
| 179 |
+
"""
|
| 180 |
+
# Handle quantity - default to 1 if missing
|
| 181 |
+
quantity = int(row.get('quantity', 1) or 1)
|
| 182 |
+
|
| 183 |
+
# Get name - required field
|
| 184 |
+
name = str(row.get('name', '')).strip()
|
| 185 |
+
if not name:
|
| 186 |
+
raise ValueError("Card name is required")
|
| 187 |
+
|
| 188 |
+
# Parse CMC - handle various formats
|
| 189 |
+
cmc_val = row.get('cmc', 0)
|
| 190 |
+
try:
|
| 191 |
+
cmc = int(float(cmc_val)) if pd.notna(cmc_val) else 0
|
| 192 |
+
except (ValueError, TypeError):
|
| 193 |
+
cmc = 0
|
| 194 |
+
|
| 195 |
+
# Parse colors - handle string or list
|
| 196 |
+
colors_raw = row.get('colors', '')
|
| 197 |
+
if pd.isna(colors_raw):
|
| 198 |
+
colors = []
|
| 199 |
+
elif isinstance(colors_raw, str):
|
| 200 |
+
# Check if it's an Untapped.gg color name
|
| 201 |
+
if colors_raw.lower() in ['gold', 'white', 'blue', 'black', 'red', 'green', 'colorless']:
|
| 202 |
+
colors = _parse_untapped_colors(colors_raw)
|
| 203 |
+
else:
|
| 204 |
+
# Standard Arena format (W, U, B, etc.)
|
| 205 |
+
colors = [c.strip() for c in colors_raw.split(',') if c.strip()]
|
| 206 |
+
else:
|
| 207 |
+
colors = list(colors_raw) if colors_raw else []
|
| 208 |
+
|
| 209 |
+
return Card(
|
| 210 |
+
name=name,
|
| 211 |
+
quantity=quantity,
|
| 212 |
+
card_type=str(row.get('type', '')).strip() or "Unknown",
|
| 213 |
+
mana_cost=str(row.get('mana_cost', '')).strip() or None,
|
| 214 |
+
cmc=cmc,
|
| 215 |
+
colors=colors,
|
| 216 |
+
rarity=str(row.get('rarity', '')).strip() or None,
|
| 217 |
+
set_code=str(row.get('set', '')).strip() or None
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
|
| 221 |
+
def parse_arena_csv_chunked(
|
| 222 |
+
filepath: str,
|
| 223 |
+
chunk_size: int = 5000
|
| 224 |
+
) -> Generator[Tuple[int, List[Card], List[int]], None, None]:
|
| 225 |
+
"""
|
| 226 |
+
Parse large CSV file in chunks using pandas chunked reader.
|
| 227 |
+
|
| 228 |
+
This is memory-efficient for large collection CSVs (up to 70K+ rows).
|
| 229 |
+
|
| 230 |
+
Args:
|
| 231 |
+
filepath: Path to the CSV file
|
| 232 |
+
chunk_size: Number of rows per chunk (default 5000)
|
| 233 |
+
|
| 234 |
+
Yields:
|
| 235 |
+
Tuple of (chunk_index, cards_list, failed_row_indices)
|
| 236 |
+
|
| 237 |
+
Example:
|
| 238 |
+
for chunk_idx, cards, failed in parse_arena_csv_chunked("collection.csv"):
|
| 239 |
+
all_cards.extend(cards)
|
| 240 |
+
all_failed.extend(failed)
|
| 241 |
+
"""
|
| 242 |
+
chunk_iter = pd.read_csv(
|
| 243 |
+
filepath,
|
| 244 |
+
chunksize=chunk_size,
|
| 245 |
+
dtype={
|
| 246 |
+
'Quantity': 'Int64', # Nullable integer
|
| 247 |
+
'Name': 'string',
|
| 248 |
+
'CMC': 'Float64', # Nullable float
|
| 249 |
+
},
|
| 250 |
+
on_bad_lines='warn',
|
| 251 |
+
encoding='utf-8'
|
| 252 |
+
)
|
| 253 |
+
|
| 254 |
+
for chunk_idx, chunk_df in enumerate(chunk_iter):
|
| 255 |
+
# Normalize column names (lowercase, underscores)
|
| 256 |
+
chunk_df.columns = (
|
| 257 |
+
chunk_df.columns.str.strip()
|
| 258 |
+
.str.lower()
|
| 259 |
+
.str.replace(' ', '_')
|
| 260 |
+
.str.replace('-', '_')
|
| 261 |
+
.str.replace('#', '') # Handle "Id #" -> "id_"
|
| 262 |
+
)
|
| 263 |
+
|
| 264 |
+
# Apply Untapped.gg normalization if needed
|
| 265 |
+
if 'id_' in chunk_df.columns and 'color' in chunk_df.columns:
|
| 266 |
+
chunk_df = _normalize_untapped_columns(chunk_df)
|
| 267 |
+
|
| 268 |
+
cards: List[Card] = []
|
| 269 |
+
failed_rows: List[int] = []
|
| 270 |
+
|
| 271 |
+
for row_idx, row in chunk_df.iterrows():
|
| 272 |
+
global_row_idx = chunk_idx * chunk_size + row_idx
|
| 273 |
+
try:
|
| 274 |
+
card = _parse_card_row(row)
|
| 275 |
+
cards.append(card)
|
| 276 |
+
except Exception as e:
|
| 277 |
+
failed_rows.append(global_row_idx)
|
| 278 |
+
logger.warning(f"Failed to parse row {global_row_idx}: {e}")
|
| 279 |
+
|
| 280 |
+
yield chunk_idx, cards, failed_rows
|
| 281 |
+
|
| 282 |
+
# Explicit memory cleanup after each chunk
|
| 283 |
+
del chunk_df
|
| 284 |
+
gc.collect()
|
| 285 |
+
|
| 286 |
+
|
| 287 |
+
def _normalize_untapped_columns(df: pd.DataFrame) -> pd.DataFrame:
|
| 288 |
+
"""
|
| 289 |
+
Normalize Untapped.gg column names to standard internal format.
|
| 290 |
+
|
| 291 |
+
Untapped.gg format: Id #, Name, Set, Color, Rarity, Quantity
|
| 292 |
+
Target format: quantity, name, set, colors, rarity
|
| 293 |
+
"""
|
| 294 |
+
# Map Untapped columns to internal names
|
| 295 |
+
column_map = {
|
| 296 |
+
'id_#': 'collector_number',
|
| 297 |
+
'name': 'name',
|
| 298 |
+
'set': 'set',
|
| 299 |
+
'color': 'colors',
|
| 300 |
+
'rarity': 'rarity',
|
| 301 |
+
'quantity': 'quantity'
|
| 302 |
+
}
|
| 303 |
+
|
| 304 |
+
# Rename columns that exist
|
| 305 |
+
df = df.rename(columns=lambda x: column_map.get(x, x))
|
| 306 |
+
|
| 307 |
+
return df
|
| 308 |
+
|
| 309 |
+
|
| 310 |
+
def _parse_untapped_colors(color_str: str) -> List[str]:
|
| 311 |
+
"""Parse Untapped.gg color string (e.g., 'Gold', 'Blue', 'Red')."""
|
| 312 |
+
if pd.isna(color_str) or not isinstance(color_str, str):
|
| 313 |
+
return []
|
| 314 |
+
|
| 315 |
+
color_str = color_str.lower().strip()
|
| 316 |
+
|
| 317 |
+
if color_str == 'gold':
|
| 318 |
+
# Gold implies multicolor, but we don't know exact colors without lookup.
|
| 319 |
+
# For analysis, we might treat it as a special category or try to infer.
|
| 320 |
+
# Returning empty list or specific marker might be safer.
|
| 321 |
+
# For now, let's leave it empty as we can't map to WUBRG accurately without card data.
|
| 322 |
+
return []
|
| 323 |
+
|
| 324 |
+
# Map standard names to WUBRG
|
| 325 |
+
color_map = {
|
| 326 |
+
'white': 'W',
|
| 327 |
+
'blue': 'U',
|
| 328 |
+
'black': 'B',
|
| 329 |
+
'red': 'R',
|
| 330 |
+
'green': 'G',
|
| 331 |
+
'colorless': ''
|
| 332 |
+
}
|
| 333 |
+
|
| 334 |
+
if color_str in color_map:
|
| 335 |
+
val = color_map[color_str]
|
| 336 |
+
return [val] if val else []
|
| 337 |
+
|
| 338 |
+
return []
|
| 339 |
+
|