Spaces:
Sleeping
Sleeping
File size: 20,306 Bytes
8ef276c e459b45 8ef276c e459b45 8ef276c 007b880 8ef276c b85470f 8ef276c 3dcdd5f 8ef276c 3dcdd5f 8ef276c 3dcdd5f 8ef276c 576583f 8ef276c 576583f 3f28293 576583f 8ef276c 576583f 8ef276c 576583f 3f28293 576583f 8ef276c 576583f 8ef276c 576583f 8ef276c 576583f 3f28293 576583f 8ef276c 576583f 8ef276c 576583f 3f28293 576583f 8ef276c 576583f 8ef276c 576583f 8ef276c 576583f 8ef276c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 |
"""
Hugging Face Spaces Demo - Voice Assistant API
Multi-language voice assistant with division matching and contact search
"""
import gradio as gr
import logging
from typing import Optional, Tuple
import numpy as np
# Import existing services
from embedding_service import EmbeddingService
from name_extraction_service import NameExtractor
from voice_processing_service import VoiceProcessor
from contact_search_service import ContactSearchService
# Set up logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# Global services (initialized once)
embedding_service: Optional[EmbeddingService] = None
name_extractor: Optional[NameExtractor] = None
voice_processor: Optional[VoiceProcessor] = None
contact_search_service: Optional[ContactSearchService] = None
def initialize_services():
"""Initialize all AI services (called once on startup)"""
global embedding_service, name_extractor, voice_processor, contact_search_service
logger.info("π Initializing services...")
# Initialize embedding service (fast & lightweight)
logger.info("Loading embedding model...")
embedding_service = EmbeddingService(model_name="all-MiniLM-L6-v2")
logger.info("β Embedding service ready!")
# Initialize name extractor
logger.info("Loading name extraction model...")
name_extractor = NameExtractor(model_name="urchade/gliner_small-v2.1")
logger.info("β Name extractor ready!")
# Initialize voice processor (using base model for speed/accuracy balance)
logger.info("Loading Whisper model...")
voice_processor = VoiceProcessor(model_size="base") # Using base for best speed/accuracy on CPU
logger.info("β Voice processor ready!")
# Initialize contact search
logger.info("Loading contact database...")
contact_search_service = ContactSearchService(name_extractor, embedding_service)
stats = contact_search_service.get_contact_stats()
logger.info(f"β Loaded {stats['total_contacts']} contacts across {stats['divisions']} divisions")
return stats
def format_division_matches(matches, names):
"""Format division matching results for display"""
if not matches:
return "No matches found."
output = []
if names:
output.append(f"**Extracted Names:** {', '.join(names)}\n")
output.append("### π― Division Matches:\n")
for i, match in enumerate(matches[:3], 1):
confidence_pct = match.confidence * 100
confidence_bar = "π’" * int(confidence_pct / 20) + "βͺ" * (5 - int(confidence_pct / 20))
output.append(f"**{i}. {match.division}**")
output.append(f" - Confidence: {confidence_pct:.1f}% {confidence_bar}")
if match.department:
output.append(f" - Department: {match.department}")
output.append("")
return "\n".join(output)
def format_contact_results(contacts, extracted_names, matched_divisions):
"""Format contact search results for display"""
if not contacts:
return "No contacts found."
output = []
if extracted_names:
output.append(f"**Extracted Names:** {', '.join(extracted_names)}\n")
if matched_divisions:
output.append(f"**Matched Divisions:** {', '.join(matched_divisions[:3])}\n")
output.append(f"### π₯ Found {len(contacts)} Contact(s):\n")
for i, contact in enumerate(contacts[:10], 1):
confidence_pct = contact['confidence'] * 100
confidence_bar = "π’" * int(confidence_pct / 20) + "βͺ" * (5 - int(confidence_pct / 20))
# Use full_name_en (English name) for display
output.append(f"**{i}. {contact['full_name_en']}** ({contact['full_name_ar']})")
output.append(f" - Title: {contact['title_en']}")
output.append(f" - Division: {contact['division']}")
output.append(f" - Department: {contact['department']}")
output.append(f" - Phone: {contact['phone']}")
output.append(f" - Email: {contact['email']}")
output.append(f" - Confidence: {confidence_pct:.1f}% {confidence_bar}")
output.append(f" - Match Reason: {contact['match_reason']}")
output.append("")
return "\n".join(output)
def search_divisions_text(query: str) -> str:
"""Search for divisions based on text query"""
if not query or not query.strip():
return "Please enter a query."
try:
# Extract names
names = name_extractor.extract_names(query)
# Find matching divisions
matches = embedding_service.find_division(query, top_k=3)
return format_division_matches(matches, names)
except Exception as e:
logger.error(f"Error in division search: {e}")
return f"Error: {str(e)}"
def search_divisions_voice(audio: Optional[Tuple[int, np.ndarray]]) -> str:
"""Search for divisions based on voice query"""
if audio is None:
return "Please record audio first."
try:
# Save audio to temporary file
sample_rate, audio_data = audio
temp_path = voice_processor.save_audio_array(audio_data, sample_rate)
# Process voice query
voice_result = voice_processor.process_voice_query(temp_path)
query = voice_result['query']
# Extract names
names = name_extractor.extract_names(query)
# Find matching divisions
matches = embedding_service.find_division(query, top_k=3)
# Format output
output = []
output.append(f"**π€ Transcribed Text:** {query}")
output.append(f"**π Language:** {voice_result['language_name']}")
if voice_result['was_translated']:
output.append(f"**π Original:** {voice_result['original_text']}")
output.append("")
output.append(format_division_matches(matches, names))
# Cleanup
voice_processor.cleanup_temp_file(temp_path)
return "\n".join(output)
except Exception as e:
logger.error(f"Error in voice division search: {e}")
return f"Error: {str(e)}"
def search_contacts_text(query: str) -> str:
"""Search for contacts based on text query"""
if not query or not query.strip():
return "Please enter a query."
try:
# Search contacts
contacts = contact_search_service.search_contacts(query, top_k=10, min_confidence=0.3)
# Extract names and divisions
names = name_extractor.extract_names(query)
division_matches = embedding_service.find_division(query, top_k=3)
matched_divisions = [m.division for m in division_matches]
return format_contact_results(contacts, names, matched_divisions)
except Exception as e:
logger.error(f"Error in contact search: {e}")
return f"Error: {str(e)}"
def search_contacts_voice(audio: Optional[Tuple[int, np.ndarray]]) -> str:
"""Search for contacts based on voice query"""
if audio is None:
return "Please record audio first."
try:
# Save audio to temporary file
sample_rate, audio_data = audio
temp_path = voice_processor.save_audio_array(audio_data, sample_rate)
# Process voice query
voice_result = voice_processor.process_voice_query(temp_path)
query = voice_result['query']
# Search contacts (this already extracts names and divisions internally)
contacts = contact_search_service.search_contacts(query, top_k=10, min_confidence=0.3)
# Format output - names and divisions are already extracted by search_contacts
output = []
output.append(f"**π€ Transcribed Text:** {query}")
output.append(f"**π Language:** {voice_result['language_name']}")
if voice_result['was_translated']:
output.append(f"**π Original:** {voice_result['original_text']}")
output.append("")
# Pass empty arrays since contact_search already did the matching
output.append(format_contact_results(contacts, [], []))
# Cleanup
voice_processor.cleanup_temp_file(temp_path)
return "\n".join(output)
except Exception as e:
logger.error(f"Error in voice contact search: {e}")
return f"Error: {str(e)}"
def create_demo():
"""Create the Gradio demo interface"""
# Initialize services on startup
stats = initialize_services()
# Create the interface
with gr.Blocks(title="Voice Assistant Demo", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# ποΈ Voice Assistant Demo
### Multi-language voice assistant with division matching and contact search
**Database:** {stats['total_contacts']} contacts β’ {stats['departments']} departments β’ {stats['divisions']} divisions
**AI Models Powered:**
- π€ **Whisper Base** - Speech recognition (99+ languages)
- π§ **MiniLM-L6-v2** - Semantic search embeddings
- π€ **GLiNER** - Named entity recognition
""")
with gr.Tabs():
# Tab 1: Division Matching (Text)
with gr.Tab("π Division Matching (Text)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
### π How It Works
```
π Your Text Query
β
βββββββββββββββ΄ββββββββββββββ
β β
π€ GLiNER π§ MiniLM
Extract Names Embeddings
β β
Person Names Divisions
β β
βββββββββββββββ¬ββββββββββββββ
β
π Show Results
```
**Models Used:**
- π§ **MiniLM-L6-v2** (Embeddings)
- π€ **GLiNER** (Name Extraction)
**Performance:** ~500ms per query
""")
with gr.Column(scale=2):
gr.Markdown("""
### Search for divisions by text query
**Try these examples:**
- "I need help from IT Security"
- "Find someone in Finance"
- "Connect me to Human Resources"
- "Find Ahmed in App Dev"
""")
div_text_input = gr.Textbox(
label="Enter your query",
placeholder="e.g., I need help from IT Security",
lines=2
)
div_text_btn = gr.Button("π Search Divisions", variant="primary", size="lg")
div_text_output = gr.Markdown(label="Results")
div_text_btn.click(
fn=search_divisions_text,
inputs=[div_text_input],
outputs=[div_text_output]
)
# Tab 2: Division Matching (Voice)
with gr.Tab("π€ Division Matching (Voice)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
### π€ How It Works
```
ποΈ Voice Input
β
π§ Whisper Base
(Speech-to-Text)
β
π Auto Language Detection
β
βββββββ΄ββββββ
β β
English? Other?
β β
β π Translate
βββββββ¬ββββββ
β
π€ GLiNER Extract Names
β
π§ MiniLM Semantic Search
β
π Ranked Results
```
**Models Used:**
- π€ **Whisper Base** (Speech-to-Text)
- π§ **MiniLM-L6-v2** (Embeddings)
- π€ **GLiNER** (Name Extraction)
**Languages:** 99+ supported
**Performance:** ~8-10s per query
""")
with gr.Column(scale=2):
gr.Markdown("""
### Search for divisions by voice
**Speak in any language:**
- English, Arabic, Spanish, French...
- Automatic transcription + translation
- Same accuracy as text search
""")
div_voice_input = gr.Audio(
sources=["microphone"],
type="numpy",
label="ποΈ Record your voice query"
)
div_voice_btn = gr.Button("π Search Divisions", variant="primary", size="lg")
div_voice_output = gr.Markdown(label="Results")
div_voice_btn.click(
fn=search_divisions_voice,
inputs=[div_voice_input],
outputs=[div_voice_output]
)
# Tab 3: Contact Search (Text)
with gr.Tab("π₯ Contact Search (Text)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
### π₯ How It Works
```
π Text Query
β
βββββββββββββββ΄ββββββββββββββ
β β
π€ GLiNER π§ MiniLM
Extract Names Match Divs
β β
Person Names Divisions
β β
βββββββββββββββ¬ββββββββββββββ
β
π Search 500 Contacts
β
π Fuzzy Match + Score
β
β Ranked Results
(by confidence score)
```
**Models Used:**
- π§ **MiniLM-L6-v2** (Division Match)
- π€ **GLiNER** (Name Extraction)
- π **Fuzzy Matching** (Contact Search)
**Database:** 500 contacts
**Performance:** ~2-3s per query
""")
with gr.Column(scale=2):
gr.Markdown("""
### Search for contacts by text query
**Try these examples:**
- "Find Dima in Information Technology"
- "Ahmed Al-Malek"
- "I need to talk to someone in Legal"
- "Find Rashed in Finance"
**Results show:**
- β
Name (English + Arabic)
- β
Job title and division
- β
Contact info (phone, email)
- β
Confidence score
""")
contact_text_input = gr.Textbox(
label="Enter your query",
placeholder="e.g., Find Dima in Information Technology",
lines=2
)
contact_text_btn = gr.Button("π Search Contacts", variant="primary", size="lg")
contact_text_output = gr.Markdown(label="Results")
contact_text_btn.click(
fn=search_contacts_text,
inputs=[contact_text_input],
outputs=[contact_text_output]
)
# Tab 4: Contact Search (Voice)
with gr.Tab("ποΈ Contact Search (Voice)"):
with gr.Row():
with gr.Column(scale=1):
gr.Markdown("""
### ποΈ How It Works
```
ποΈ Voice Input
β
π§ Whisper Transcribe
β
π Language Detection
β
βββββββ΄ββββββ
β β
English? Arabic/Other?
β β
β π Translate
βββββββ¬ββββββ
β
π€ GLiNER Extract Names
β
π§ MiniLM Match Divisions
β
π Search 500 Contacts
β
π Fuzzy Match + Score
β
β Ranked Results
```
**Full AI Pipeline:**
- π€ **Whisper** (Transcription)
- π **Translation** (Auto)
- π€ **GLiNER** (Names)
- π§ **MiniLM** (Divisions)
- π **Fuzzy Match** (Contacts)
**Performance:** ~8-12s total
""")
with gr.Column(scale=2):
gr.Markdown("""
### Search for contacts by voice
**Speak naturally in any language:**
- "Find Ahmed from IT"
- "Ψ£ΨΨͺΨ§Ψ¬ Ψ£ΨΩ
Ψ― Ω
Ω ΨͺΩΩΩΨ© Ψ§ΩΩ
ΨΉΩΩΩ
Ψ§Ψͺ" (Arabic)
- Automatic language detection
- Same results as text search
**Perfect for:**
- β
Mobile/hands-free use
- β
Non-English speakers
- β
Quick lookups
""")
contact_voice_input = gr.Audio(
sources=["microphone"],
type="numpy",
label="ποΈ Record your voice query"
)
contact_voice_btn = gr.Button("π Search Contacts", variant="primary", size="lg")
contact_voice_output = gr.Markdown(label="Results")
contact_voice_btn.click(
fn=search_contacts_voice,
inputs=[contact_voice_input],
outputs=[contact_voice_output]
)
gr.Markdown("""
---
**Models:**
- Embeddings: `sentence-transformers/all-MiniLM-L6-v2`
- Name Extraction: `urchade/gliner_small-v2.1`
- Speech-to-Text: `openai/whisper-base`
**Supported Languages:** 99+ languages (auto-detected)
""")
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch()
|