Update app.py
Browse files
app.py
CHANGED
|
@@ -6,11 +6,18 @@ from io import StringIO
|
|
| 6 |
import csv
|
| 7 |
|
| 8 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
# Set page configuration first
|
| 10 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
| 11 |
|
| 12 |
# Initialize Gemini
|
| 13 |
-
genai.configure(api_key=os.getenv("
|
| 14 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
| 15 |
|
| 16 |
# Load solar data
|
|
@@ -42,8 +49,7 @@ def build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw):
|
|
| 42 |
- Monthly electricity bill: ₹{electricity_bill}
|
| 43 |
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
|
| 44 |
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
|
| 45 |
-
|
| 46 |
-
Provide:
|
| 47 |
1. Estimated solar system size in kW
|
| 48 |
2. Estimated daily solar output in kWh
|
| 49 |
3. Total system cost in ₹
|
|
@@ -63,13 +69,16 @@ if submitted and location and roof_size > 0 and electricity_bill >= 0:
|
|
| 63 |
prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw)
|
| 64 |
|
| 65 |
# Call Gemini API once for all the batch generation
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
| 73 |
else:
|
| 74 |
st.error("Sorry, the location entered does not match any available data.")
|
| 75 |
else:
|
|
|
|
| 6 |
import csv
|
| 7 |
|
| 8 |
|
| 9 |
+
import streamlit as st
|
| 10 |
+
import pandas as pd
|
| 11 |
+
import google.generativeai as genai
|
| 12 |
+
import os
|
| 13 |
+
from io import StringIO
|
| 14 |
+
import csv
|
| 15 |
+
|
| 16 |
# Set page configuration first
|
| 17 |
st.set_page_config(page_title="AI-based Solar Project Estimation Tool", layout="centered")
|
| 18 |
|
| 19 |
# Initialize Gemini
|
| 20 |
+
genai.configure(api_key=os.getenv("GEMINI_API_KEY")) # Ensure your Gemini API key is set as an environment variable
|
| 21 |
model = genai.GenerativeModel("gemini-1.5-flash")
|
| 22 |
|
| 23 |
# Load solar data
|
|
|
|
| 49 |
- Monthly electricity bill: ₹{electricity_bill}
|
| 50 |
- Average GHI (solar radiation) for {location}: {ghi} kWh/m²/day
|
| 51 |
- Solar system cost per kW in {location}: ₹{solar_cost_per_kw}
|
| 52 |
+
Provide the following:
|
|
|
|
| 53 |
1. Estimated solar system size in kW
|
| 54 |
2. Estimated daily solar output in kWh
|
| 55 |
3. Total system cost in ₹
|
|
|
|
| 69 |
prompt_text = build_prompt(location, roof_size, electricity_bill, ghi, solar_cost_per_kw)
|
| 70 |
|
| 71 |
# Call Gemini API once for all the batch generation
|
| 72 |
+
with st.spinner("Generating solar estimate with Gemini..."):
|
| 73 |
+
response = model.generate_content(prompt_text)
|
| 74 |
+
|
| 75 |
+
# Display structured output
|
| 76 |
+
st.subheader("Solar Project Estimate")
|
| 77 |
+
|
| 78 |
+
# Break down the response into structured points
|
| 79 |
+
estimated_data = response.text.strip().split("\n")
|
| 80 |
+
for point in estimated_data:
|
| 81 |
+
st.write(f"- {point}")
|
| 82 |
else:
|
| 83 |
st.error("Sorry, the location entered does not match any available data.")
|
| 84 |
else:
|