GeoMateV2 / app.py
MSU576's picture
Update app.py
3c52431 verified
raw
history blame
87.4 kB
# app.py β€” GeoMate V2 (single-file)
# Save this as app.py in your HuggingFace Space (or local folder)
# 0) Page config (must be first Streamlit command)
import streamlit as st
st.set_page_config(page_title="GeoMate V2", page_icon="🌍", layout="wide", initial_sidebar_state="expanded")
# 1) Standard imports
import os
import io
import json
import math
import base64
import tempfile
from datetime import datetime
from typing import Dict, Any, Tuple, List, Optional
import streamlit as st
from streamlit_folium import st_folium
# Visualization & PDF
import matplotlib.pyplot as plt
from reportlab.lib.pagesizes import A4
from reportlab.lib import colors
from reportlab.lib.units import mm
from reportlab.platypus import SimpleDocTemplate, Paragraph, Spacer, Table, TableStyle, Image as RLImage, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
# Ensure icon fonts load (fix desktop icon display for option_menu)
st.markdown("""
<!-- Load icon fonts used by streamlit_option_menu -->
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/bootstrap-icons@1.11.3/font/bootstrap-icons.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.4.0/css/all.min.css">
""", unsafe_allow_html=True)
# Optional imports handled gracefully
try:
import geemap
import ee
EE_AVAILABLE = True
except Exception:
EE_AVAILABLE = False
try:
from fpdf import FPDF
FPDF_AVAILABLE = True
except Exception:
FPDF_AVAILABLE = False
try:
import faiss
FAISS_AVAILABLE = True
except Exception:
FAISS_AVAILABLE = False
try:
import pytesseract
from PIL import Image
OCR_AVAILABLE = True
except Exception:
OCR_AVAILABLE = False
# Groq client import β€” we will require key
try:
from groq import Groq
GROQ_AVAILABLE = True
except Exception:
GROQ_AVAILABLE = False
# 2) Secrets check (strict)
REQUIRED_SECRETS = ["GROQ_API_KEY", "SERVICE_ACCOUNT", "EARTH_ENGINE_KEY"]
missing = [s for s in REQUIRED_SECRETS if not os.environ.get(s)]
if missing:
st.sidebar.error(f"Missing required secrets: {', '.join(missing)}. Please add these to your HF Space secrets.")
st.error("Required secrets missing. Please set GROQ_API_KEY, SERVICE_ACCOUNT, and EARTH_ENGINE_KEY in Secrets and reload the app.")
st.stop()
# If Groq lib missing, still stop because user requested Groq usage
if not GROQ_AVAILABLE:
st.sidebar.error("Python package 'groq' not installed. Add it to requirements.txt and redeploy.")
st.error("Missing required library 'groq'. Please add to requirements and redeploy.")
st.stop()
# 3) Global constants & helper functions
MAX_SITES = 4
# ----------------------------
# Soil Recognizer Page (Integrated 6-Class ResNet18)
# ----------------------------
import torch
import torch.nn as nn
import torchvision.models as models
import torchvision.transforms as T
from PIL import Image
import streamlit as st
# ----------------------------
# Load Soil Model (6 Classes)
# ----------------------------
@st.cache_resource
def load_soil_model(path="soil_best_model.pth"):
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
try:
model = models.resnet18(pretrained=False)
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 6) # 6 soil classes
# Load checkpoint
state_dict = torch.load(path, map_location=device)
model.load_state_dict(state_dict)
model = model.to(device)
model.eval()
return model, device
except Exception as e:
st.error(f"⚠️ Could not load soil model: {e}")
return None, device
soil_model, device = load_soil_model()
# ----------------------------
# Soil Classes & Transform
# ----------------------------
SOIL_CLASSES = ["Clay", "Gravel", "Loam", "Peat", "Sand", "Silt"]
transform = T.Compose([
T.Resize((224, 224)),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])
])
# ----------------------------
# Prediction Function
# ----------------------------
def predict_soil(img: Image.Image):
if soil_model is None:
return "Model not loaded", {}
img = img.convert("RGB")
inp = transform(img).unsqueeze(0).to(device)
with torch.no_grad():
logits = soil_model(inp)
probs = torch.softmax(logits[0], dim=0)
top_idx = torch.argmax(probs).item()
predicted_class = SOIL_CLASSES[top_idx]
result = {SOIL_CLASSES[i]: float(probs[i]) for i in range(len(SOIL_CLASSES))}
return predicted_class, result
# ----------------------------
# Soil Recognizer Page
# ----------------------------
def soil_recognizer_page():
st.header("πŸ–ΌοΈ Soil Recognizer (ResNet18)")
site = st.session_state["sites"] # your existing site getter
if site is None:
st.warning("⚠️ No active site selected. Please add or select a site from the sidebar.")
return
uploaded = st.file_uploader("Upload soil image", type=["jpg", "jpeg", "png"])
if uploaded is not None:
img = Image.open(uploaded)
st.image(img, caption="Uploaded soil image", use_column_width=True)
predicted_class, confidence_scores = predict_soil(img)
st.success(f"βœ… Predicted: **{predicted_class}**")
st.subheader("Confidence Scores")
for cls, score in confidence_scores.items():
st.write(f"{cls}: {score:.2%}")
if st.button("Save to site"):
# Save predicted soil class into Soil Profile field
st.session_state["sites"][st.session_state["active_site"]]["Soil Class"] = predicted_class
st.session_state["sites"][st.session_state["active_site"]]["Soil Recognizer Confidence"] = confidence_scores[predicted_class]
save_active_site(site)
st.success("Saved prediction to active site memory.")
# Pre-defined dropdown text mappings (as you requested) β€” exact text with mapping numbers for logic backend
DILATANCY_OPTIONS = [
"1. Quick to slow",
"2. None to very slow",
"3. Slow",
"4. Slow to none",
"5. None",
"6. Null?"
]
TOUGHNESS_OPTIONS = [
"1. None",
"2. Medium",
"3. Slight?",
"4. Slight to Medium?",
"5. High",
"6. Null?"
]
DRY_STRENGTH_OPTIONS = [
"1. None to slight",
"2. Medium to high",
"3. Slight to Medium",
"4. High to very high",
"5. Null?"
]
# Map option text to numeric codes used in your USCS logic
DILATANCY_MAP = {DILATANCY_OPTIONS[i]: i+1 for i in range(len(DILATANCY_OPTIONS))}
TOUGHNESS_MAP = {TOUGHNESS_OPTIONS[i]: i+1 for i in range(len(TOUGHNESS_OPTIONS))}
DRY_STRENGTH_MAP = {DRY_STRENGTH_OPTIONS[i]: i+1 for i in range(len(DRY_STRENGTH_OPTIONS))}
# Engineering characteristics dictionary (expanded earlier; trimmed to representative entries but detailed)
ENGINEERING_CHARACTERISTICS = {
"Gravel": {
"Settlement": "None",
"Quicksand": "Impossible",
"Frost-heaving": "None",
"Groundwater_lowering": "Possible",
"Cement_grouting": "Possible",
"Silicate_bitumen_injections": "Unsuitable",
"Compressed_air": "Possible (see notes)"
},
"Coarse sand": {
"Settlement": "None",
"Quicksand": "Impossible",
"Frost-heaving": "None",
"Groundwater_lowering": "Possible",
"Cement_grouting": "Possible only if very coarse",
"Silicate_bitumen_injections": "Suitable",
"Compressed_air": "Suitable"
},
"Medium sand": {
"Settlement": "None",
"Quicksand": "Unlikely",
"Frost-heaving": "None",
"Groundwater_lowering": "Suitable",
"Cement_grouting": "Impossible",
"Silicate_bitumen_injections": "Suitable",
"Compressed_air": "Suitable"
},
"Fine sand": {
"Settlement": "None",
"Quicksand": "Liable",
"Frost-heaving": "None",
"Groundwater_lowering": "Suitable",
"Cement_grouting": "Impossible",
"Silicate_bitumen_injections": "Not possible in very fine sands",
"Compressed_air": "Suitable"
},
"Silt": {
"Settlement": "Occurs",
"Quicksand": "Liable (very coarse silts may behave differently)",
"Frost-heaving": "Occurs",
"Groundwater_lowering": "Generally not suitable (electro-osmosis possible)",
"Cement_grouting": "Impossible",
"Silicate_bitumen_injections": "Impossible",
"Compressed_air": "Suitable"
},
"Clay": {
"Settlement": "Occurs",
"Quicksand": "Impossible",
"Frost-heaving": "None",
"Groundwater_lowering": "Impossible (generally)",
"Cement_grouting": "Only in stiff fissured clay",
"Silicate_bitumen_injections": "Impossible",
"Compressed_air": "Used for support only in special cases"
}
}
# USCS & AASHTO verbatim logic (function)
from math import floor
def classify_uscs_aashto(inputs: Dict[str, Any]) -> Tuple[str, str, int, Dict[str, str], str]:
"""
Verbatim USCS + AASHTO classifier based on the logic you supplied.
inputs: dictionary expected keys:
opt: 'y' or 'n'
P2 (float): % passing #200 (0.075 mm)
P4 (float): % passing #4 (4.75 mm)
D60, D30, D10 (float mm) - can be 0 if unknown
LL, PL (float)
nDS, nDIL, nTG (int) mapped from dropdowns
Returns:
result_text (markdown), aashto_str, GI, engineering_characteristics (dict), uscs_str
"""
opt = str(inputs.get("opt","n")).lower()
if opt == 'y':
uscs = "Pt"
uscs_expl = "Peat / organic soil β€” compressible, high organic content; poor engineering properties for load-bearing without special treatment."
aashto = "Organic (special handling)"
GI = 0
chars = {"summary":"Highly organic peat β€” large settlement, low strength, not suitable for foundations without improvement."}
res_text = f"According to USCS, the soil is **{uscs}** β€” {uscs_expl}\n\nAccording to AASHTO, the soil is **{aashto}**."
return res_text, aashto, GI, chars, uscs
# parse numeric inputs with defaults
P2 = float(inputs.get("P2", 0.0))
P4 = float(inputs.get("P4", 0.0))
D60 = float(inputs.get("D60", 0.0))
D30 = float(inputs.get("D30", 0.0))
D10 = float(inputs.get("D10", 0.0))
LL = float(inputs.get("LL", 0.0))
PL = float(inputs.get("PL", 0.0))
PI = LL - PL if (LL is not None and PL is not None) else 0.0
Cu = (D60 / D10) if (D10 > 0 and D60 > 0) else 0.0
Cc = ((D30 ** 2) / (D10 * D60)) if (D10 > 0 and D30 > 0 and D60 > 0) else 0.0
uscs = "Unknown"
uscs_expl = ""
if P2 <= 50:
# Coarse-Grained Soils
if P4 <= 50:
# Gravels
if Cu != 0 and Cc != 0:
if Cu >= 4 and 1 <= Cc <= 3:
uscs = "GW"; uscs_expl = "Well-graded gravel (good engineering properties, high strength, good drainage)."
else:
uscs = "GP"; uscs_expl = "Poorly-graded gravel (less favorable gradation)."
else:
if PI < 4 or PI < 0.73 * (LL - 20):
uscs = "GM"; uscs_expl = "Silty gravel (fines may reduce permeability and strength)."
elif PI > 7 and PI > 0.73 * (LL - 20):
uscs = "GC"; uscs_expl = "Clayey gravel (clayey fines increase plasticity)."
else:
uscs = "GM-GC"; uscs_expl = "Gravel with mixed silt/clay fines."
else:
# Sands
if Cu != 0 and Cc != 0:
if Cu >= 6 and 1 <= Cc <= 3:
uscs = "SW"; uscs_expl = "Well-graded sand (good compaction and drainage)."
else:
uscs = "SP"; uscs_expl = "Poorly-graded sand (uniform or gap-graded)."
else:
if PI < 4 or PI <= 0.73 * (LL - 20):
uscs = "SM"; uscs_expl = "Silty sand (fines are low-plasticity silt)."
elif PI > 7 and PI > 0.73 * (LL - 20):
uscs = "SC"; uscs_expl = "Clayey sand (clayey fines present; higher plasticity)."
else:
uscs = "SM-SC"; uscs_expl = "Transition between silty sand and clayey sand."
else:
# Fine-Grained Soils
nDS = int(inputs.get("nDS", 5))
nDIL = int(inputs.get("nDIL", 6))
nTG = int(inputs.get("nTG", 6))
if LL < 50:
if 20 <= LL < 50 and PI <= 0.73 * (LL - 20):
if nDS == 1 or nDIL == 3 or nTG == 3:
uscs = "ML"; uscs_expl = "Silt (low plasticity)."
elif nDS == 3 or nDIL == 3 or nTG == 3:
uscs = "OL"; uscs_expl = "Organic silt (low plasticity)."
else:
uscs = "ML-OL"; uscs_expl = "Mixed silt/organic silt."
elif 10 <= LL <= 30 and 4 <= PI <= 7 and PI > 0.72 * (LL - 20):
if nDS == 1 or nDIL == 1 or nTG == 1:
uscs = "ML"; uscs_expl = "Silt"
elif nDS == 2 or nDIL == 2 or nTG == 2:
uscs = "CL"; uscs_expl = "Clay (low plasticity)."
else:
uscs = "ML-CL"; uscs_expl = "Mixed silt/clay"
else:
uscs = "CL"; uscs_expl = "Clay (low plasticity)."
else:
if PI < 0.73 * (LL - 20):
if nDS == 3 or nDIL == 4 or nTG == 4:
uscs = "MH"; uscs_expl = "Silt (high plasticity)"
elif nDS == 2 or nDIL == 2 or nTG == 4:
uscs = "OH"; uscs_expl = "Organic silt/clay (high plasticity)"
else:
uscs = "MH-OH"; uscs_expl = "Mixed high-plasticity silt/organic"
else:
uscs = "CH"; uscs_expl = "Clay (high plasticity)"
# === AASHTO (verbatim) ===
if P2 <= 35:
if P2 <= 15 and P4 <= 30 and PI <= 6:
aashto = "A-1-a"
elif P2 <= 25 and P4 <= 50 and PI <= 6:
aashto = "A-1-b"
elif P2 <= 35 and P4 > 0:
if LL <= 40 and PI <= 10:
aashto = "A-2-4"
elif LL >= 41 and PI <= 10:
aashto = "A-2-5"
elif LL <= 40 and PI >= 11:
aashto = "A-2-6"
elif LL >= 41 and PI >= 11:
aashto = "A-2-7"
else:
aashto = "A-2"
else:
aashto = "A-3"
else:
if LL <= 40 and PI <= 10:
aashto = "A-4"
elif LL >= 41 and PI <= 10:
aashto = "A-5"
elif LL <= 40 and PI >= 11:
aashto = "A-6"
else:
aashto = "A-7-5" if PI <= (LL - 30) else "A-7-6"
# Group Index
a = P2 - 35
a = 0 if a < 0 else (40 if a > 40 else a)
b = P2 - 15
b = 0 if b < 0 else (40 if b > 40 else b)
c = LL - 40
c = 0 if c < 0 else (20 if c > 20 else c)
d = PI - 10
d = 0 if d < 0 else (20 if d > 20 else d)
GI = floor(0.2 * a + 0.005 * a * c + 0.01 * b * d)
aashto_expl = f"{aashto} (Group Index = {GI})"
# engineering characteristics pick
char_summary = {}
found_key = None
for key in ENGINEERING_CHARACTERISTICS:
if key.lower() in uscs.lower() or key.lower() in uscs_expl.lower():
found_key = key
break
if found_key:
char_summary = ENGINEERING_CHARACTERISTICS[found_key]
else:
# fallback selection by starting letter
if uscs.startswith("G") or uscs.startswith("S"):
char_summary = ENGINEERING_CHARACTERISTICS.get("Coarse sand", {})
else:
char_summary = ENGINEERING_CHARACTERISTICS.get("Silt", {})
res_text_lines = [
f"According to USCS, the soil is **{uscs}** β€” {uscs_expl}",
f"According to AASHTO, the soil is **{aashto_expl}**",
"",
"Engineering characteristics (summary):"
]
for k,v in char_summary.items():
res_text_lines.append(f"- **{k}**: {v}")
result_text = "\n".join(res_text_lines)
return result_text, aashto_expl, GI, char_summary, uscs
# Helper: GSD interpolation to find diameters D10,D30,D60
def compute_gsd_metrics(diams: List[float], passing: List[float]) -> Dict[str, float]:
"""
diams: list of diameters in mm (descending)
passing: corresponding % passing (0-100)
returns D10, D30, D60, Cu, Cc
"""
# ensure descending diam, convert to float arrays
if len(diams) < 2 or len(diams) != len(passing):
raise ValueError("Diameters and passing arrays must match and have at least 2 items.")
# linear interpolation on log(d)
import numpy as np
d = np.array(diams)
p = np.array(passing)
# make sure p is decreasing or increasing? passing decreases as diameter decreases, but we will handle general interpolation by sorting by diameter descending
order = np.argsort(-d)
d = d[order]
p = p[order]
# drop duplicates etc
# function to find Dx = diameter at which passing = x (percent)
def find_D(x):
if x <= p.min():
return float(d[p.argmin()])
if x >= p.max():
return float(d[p.argmax()])
# linear interpolation on p vs log(d)
from math import log, exp
ld = np.log(d)
# interpolate ld as function of p
ld_interp = np.interp(x, p[::-1], ld[::-1]) # reverse because interp expects ascending x
return float(math.exp(ld_interp))
D10 = find_D(10.0)
D30 = find_D(30.0)
D60 = find_D(60.0)
Cu = D60 / D10 if D10 > 0 else 0.0
Cc = (D30 ** 2) / (D10 * D60) if (D10 > 0 and D60 > 0) else 0.0
return {"D10":D10, "D30":D30, "D60":D60, "Cu":Cu, "Cc":Cc}
# 4) Session state initialization
if "sites" not in st.session_state:
# initialize with a default site
st.session_state["sites"] = [{
"Site Name": None,
"Project Name": "Project",
"Site ID": None,
"Soil Class": None,
"Soil Recognizer Confidence": None,
"Coordinates": "",
"lat": None,
"lon": None,
"Project Description": "",
# ---------------------------
# Site Characterization
# ---------------------------
"Topography": None, # manual topo entry
"Drainage": None, # manual drainage notes
"Current Land Use": None, # can be linked to Environmental Data
"Regional Geology": None, # manual geology notes
# ---------------------------
# Investigations & Lab
# ---------------------------
"Field Investigation": [],
"Laboratory Results": [],
"GSD": None,
"USCS": None,
"AASHTO": None,
"GI": None,
# ---------------------------
# Geotechnical Parameters
# ---------------------------
"Load Bearing Capacity": None,
"Skin Shear Strength": None,
"Relative Compaction": None,
"Rate of Consolidation": None,
"Nature of Construction": None,
# ---------------------------
# Earth Engine Data
# ---------------------------
"Soil Profile": { # SoilGrids (multi-parameter)
"Clay": None, # e.g. % clay at 200 cm
"Sand": None, # % sand
"Silt": None, # % silt
"OrganicCarbon": None, # % organic carbon
"pH": None # soil pH if available
},
"Topo Data": None, # Avg elevation (SRTM DEM)
"Seismic Data": None, # PGA/g (GEM hazard)
"Flood Data": None, # JRC Surface Water occurrence
"Environmental Data": { # Landcover, vegetation, urban, etc.
"Landcover Stats": None, # histogram by class
"Forest Loss": None, # future add: Hansen dataset
"Urban Fraction": None # optional calc from landcover
},
"Weather Data": { # daily/monthly climate summaries
"Rainfall": None,
"Temperature": None,
"Humidity": None
},
"Atmospheric Data": { # optional: pollution, aerosols
"AerosolOpticalDepth": None,
"NO2": None,
"CO": None
},
# ---------------------------
# Map & Visualization
# ---------------------------
"map_snapshot": None,
# ---------------------------
# AI / Reporting
# ---------------------------
"chat_history": [],
"classifier_inputs": {},
"classifier_decision": None,
"report_convo_state": 0,
"report_missing_fields": [],
"report_answers": {}
}]
if "active_site" not in st.session_state:
st.session_state["active_site"] = 0
if "llm_model" not in st.session_state:
st.session_state["llm_model"] = "groq/compound"
# Groq client (simple wrapper)
GROQ_API_KEY = os.environ.get("GROQ_API_KEY")
def groq_generate(prompt: str, model: str = None, max_tokens: int = 512) -> str:
"""Call Groq. If call fails, return an explanatory text."""
try:
client = Groq(api_key=GROQ_API_KEY)
model_name = model or st.session_state["llm_model"]
completion = client.chat.completions.create(
model=model_name,
messages=[{"role":"user","content":prompt}],
temperature=0.2,
max_tokens=max_tokens
)
text = completion.choices[0].message.content
return text
except Exception as e:
return f"[LLM error or offline: {e}]"
# 5) UI helper: nice CSS for chat bubbles & page styling
st.markdown("""
<style>
/* Background and card styling */
body { background: #0b0b0b; color: #e9eef6; }
.stApp > .main > .block-container { padding-top: 18px; }
/* Landing and cards */
.gm-card { background: linear-gradient(180deg, rgba(255,122,0,0.04), rgba(255,122,0,0.02)); border-radius:12px; padding:14px; border:1px solid rgba(255,122,0,0.06);}
.gm-cta { background: linear-gradient(90deg,#ff7a00,#ff3a3a); color:white; padding:10px 14px; border-radius:10px; font-weight:700; }
/* Chat bubbles */
.chat-bot { background: #0f1720; border-left:4px solid #FF7A00; padding:10px 12px; border-radius:12px; margin:6px 0; color:#e9eef6; }
.chat-user { background: #1a1f27; padding:10px 12px; border-radius:12px; margin:6px 0; color:#cfe6ff; text-align:right;}
.small-muted { color:#9aa7bf; font-size:12px; }
</style>
""", unsafe_allow_html=True)
# 6) Sidebar: navigation, site selector, model selector
from streamlit_option_menu import option_menu
with st.sidebar:
st.markdown("<h2 style='color:#FF8C00;margin:8px 0'>GeoMate V2</h2>", unsafe_allow_html=True)
# LLM model selector
st.session_state["llm_model"] = st.selectbox("Select LLM model", options=[
"meta-llama/llama-4-maverick-17b-128e-instruct",
"llama-3.1-8b-instant",
"meta-llama/llama-guard-4-12b",
"llama-3.3-70b-versatile",
"groq/compound"
], index=0)
st.markdown("---")
# Site management controls
st.markdown("### Project Sites")
site_names = [s.get("Site Name", f"Site {i}") for i,s in enumerate(st.session_state["sites"])]
# Add new site input
new_site_name = st.text_input("New site name", value="", key="new_site_name_input")
if st.button("βž• Add / Create Site"):
if new_site_name.strip() == "":
st.warning("Enter a name for the new site.")
elif len(st.session_state["sites"]) >= MAX_SITES:
st.error(f"Maximum of {MAX_SITES} sites allowed.")
else:
idx = len(st.session_state["sites"])
#idx = len(st.session_state["sites"]) + 1
st.session_state["sites"].append({
"Site Name": new_site_name.strip(),
"Project Name": "Project - " + new_site_name.strip(),
"Site ID": idx,
"Soil Class": None,
"Soil Recognizer Confidence": None,
"Coordinates": "",
"lat": None,
"lon": None,
"Project Description": "",
# ---------------------------
# Site Characterization
# ---------------------------
"Topography": None, # manual topo entry
"Drainage": None, # manual drainage notes
"Current Land Use": None, # can be linked to Environmental Data
"Regional Geology": None, # manual geology notes
# ---------------------------
# Investigations & Lab
# ---------------------------
"Field Investigation": [],
"Laboratory Results": [],
"GSD": None,
"USCS": None,
"AASHTO": None,
"GI": None,
# ---------------------------
# Geotechnical Parameters
# ---------------------------
"Load Bearing Capacity": None,
"Skin Shear Strength": None,
"Relative Compaction": None,
"Rate of Consolidation": None,
"Nature of Construction": None,
# ---------------------------
# Earth Engine Data
# ---------------------------
"Soil Profile": { # SoilGrids (multi-parameter)
"Clay": None, # e.g. % clay at 200 cm
"Sand": None, # % sand
"Silt": None, # % silt
"OrganicCarbon": None, # % organic carbon
"pH": None # soil pH if available
},
"Topo Data": None, # Avg elevation (SRTM DEM)
"Seismic Data": None, # PGA/g (GEM hazard)
"Flood Data": None, # JRC Surface Water occurrence
"Environmental Data": { # Landcover, vegetation, urban, etc.
"Landcover Stats": None, # histogram by class
"Forest Loss": None, # future add: Hansen dataset
"Urban Fraction": None # optional calc from landcover
},
"Weather Data": { # daily/monthly climate summaries
"Rainfall": None,
"Temperature": None,
"Humidity": None
},
"Atmospheric Data": { # optional: pollution, aerosols
"AerosolOpticalDepth": None,
"NO2": None,
"CO": None
},
# ---------------------------
# Map & Visualization
# ---------------------------
"map_snapshot": None,
# ---------------------------
# AI / Reporting
# ---------------------------
"chat_history": [],
"classifier_inputs": {},
"classifier_decision": None,
"report_convo_state": 0,
"report_missing_fields": [],
"report_answers": {}
})
st.success(f"Site '{new_site_name.strip()}' created.")
st.session_state["active_site"] = idx
st.rerun()
# Active site selector
if site_names:
active_index = st.selectbox("Active Site", options=list(range(len(site_names))),
format_func=lambda x: site_names[x], index=st.session_state["active_site"])
st.session_state["active_site"] = active_index
st.markdown("---")
st.write("Active Site JSON (live)")
st.json(st.session_state["sites"][st.session_state["active_site"]])
st.markdown("---")
st.markdown("Β© GeoMate β€’ Advanced geotechnical copilot", unsafe_allow_html=True)
# 7) Pages implementation
def landing_page():
# Background hero with placeholder image (replace BACKGROUND_URL with your image path or URL)
BACKGROUND_URL = "/app/background_placeholder.jpg" # <- replace this (or provide URL)
st.markdown(f"""
<div style="
background-image: url('{BACKGROUND_URL}');
background-size: cover;
background-position: center;
padding: 48px 28px;
border-radius: 12px;
margin-bottom: 18px;
position: relative;
">
<div style="background: rgba(11,11,11,0.55); padding:22px; border-radius:10px; max-width:900px;">
<h1 style='color:#FF8C00; margin:0'>GeoMate V2</h1>
<p style='color:#e8eef6; margin:6px 0 0; font-size:16px'>
AI geotechnical copilot β€” soil recognition, classification, locator (EE), RAG-powered Q&A, and dynamic reports.
</p>
<div style='margin-top:8px; color:#cfcfcf; font-size:13px'>
Quick: Classifier β€’ GSD β€’ Locator β€’ RAG β€’ Reports
</div>
</div>
</div>
""", unsafe_allow_html=True)
st.markdown("<div style='display:flex;align-items:center;gap:12px'>"
"<div style='width:76px;height:76px;border-radius:14px;background:linear-gradient(135deg,#ff7a00,#ff3a3a);display:flex;align-items:center;justify-content:center;box-shadow:0 8px 24px rgba(0,0,0,0.6)'>"
"<span style='font-size:34px'>πŸ›°οΈ</span></div>"
"<div><h1 style='margin:0;color:#FF8C00'>GeoMate V2</h1>"
"<div class='small-muted'>AI geotechnical copilot β€” soil recognition, classification, locator, RAG, and reports</div></div></div>", unsafe_allow_html=True)
st.markdown("---")
col1, col2 = st.columns([2,1])
with col1:
st.markdown("<div class='gm-card'>", unsafe_allow_html=True)
st.write("GeoMate is built to help geotechnical engineers: classify soils (USCS/AASHTO), plot GSD, fetch Earth Engine data, chat with a RAG-backed LLM, and generate professional geotechnical reports.")
st.markdown("</div>", unsafe_allow_html=True)
st.markdown("### Quick Actions")
c1, c2, c3 = st.columns(3)
if c1.button("πŸ§ͺ Classifier"):
st.session_state["page"] = "Classifier"; st.rerun()
if c2.button("πŸ“ˆ GSD Curve"):
st.session_state["page"] = "GSD"; st.rerun()
if c3.button("🌍 Locator"):
st.session_state["page"] = "Locator"; st.rerun()
c4, c5, c6 = st.columns(3)
if c4.button("πŸ€– GeoMate Ask"):
st.session_state["page"] = "RAG"; st.rerun()
if c5.button("πŸ“· OCR"):
st.session_state["page"] = "OCR"; st.rerun()
if c6.button("πŸ“‘ Reports"):
st.session_state["page"] = "Reports"; st.rerun()
with col2:
st.markdown("<div class='gm-card' style='text-align:center'>", unsafe_allow_html=True)
st.markdown("<h3 style='color:#FF8C00'>Live Site Summary</h3>", unsafe_allow_html=True)
site = st.session_state["sites"][st.session_state["active_site"]]
st.write(f"Site: **{site.get('Site Name')}**")
st.write(f"USCS: {site.get('USCS')}, AASHTO: {site.get('AASHTO')}")
st.write(f"GSD saved: {'Yes' if site.get('GSD') else 'No'}")
st.markdown("</div>", unsafe_allow_html=True)
# Soil Classifier page (conversational, step-by-step)
def soil_classifier_page():
st.header("πŸ§ͺ Soil Classifier β€” Conversational (USCS & AASHTO)")
site = st.session_state["sites"][st.session_state["active_site"]]
# conversation state machine: steps list
steps = [
{"id":"intro", "bot":"Hello β€” I am the GeoMate Soil Classifier. Ready to start?"},
{"id":"organic", "bot":"Is the soil at this site organic (contains high organic matter, feels spongy or has odour)?", "type":"choice", "choices":["No","Yes"]},
{"id":"P2", "bot":"Please enter the percentage passing the #200 sieve (0.075 mm). Example: 12", "type":"number"},
{"id":"P4", "bot":"What is the percentage passing the sieve no. 4 (4.75 mm)? (enter 0 if unknown)", "type":"number"},
{"id":"hasD", "bot":"Do you know the D10, D30 and D60 diameters (in mm)?", "type":"choice","choices":["No","Yes"]},
{"id":"D60", "bot":"Enter D60 (diameter in mm corresponding to 60% passing).", "type":"number"},
{"id":"D30", "bot":"Enter D30 (diameter in mm corresponding to 30% passing).", "type":"number"},
{"id":"D10", "bot":"Enter D10 (diameter in mm corresponding to 10% passing).", "type":"number"},
{"id":"LL", "bot":"What is the liquid limit (LL)?", "type":"number"},
{"id":"PL", "bot":"What is the plastic limit (PL)?", "type":"number"},
{"id":"dry", "bot":"Select the observed dry strength of the fine soil (if applicable).", "type":"select", "options":DRY_STRENGTH_OPTIONS},
{"id":"dilat", "bot":"Select the observed dilatancy behaviour.", "type":"select", "options":DILATANCY_OPTIONS},
{"id":"tough", "bot":"Select the observed toughness.", "type":"select", "options":TOUGHNESS_OPTIONS},
{"id":"confirm", "bot":"Would you like me to classify now?", "type":"choice", "choices":["No","Yes"]}
]
if "classifier_step" not in st.session_state:
st.session_state["classifier_step"] = 0
if "classifier_inputs" not in st.session_state:
st.session_state["classifier_inputs"] = dict(site.get("classifier_inputs", {}))
step_idx = st.session_state["classifier_step"]
# chat history display
st.markdown("<div class='gm-card'>", unsafe_allow_html=True)
st.markdown("<div class='chat-bot'>{}</div>".format("GeoMate: Hello β€” soil classifier ready. Use the controls below to answer step-by-step."), unsafe_allow_html=True)
# Show stored user answers sequentially for context
# render question up to current step
for i in range(step_idx+1):
s = steps[i]
# show bot prompt
st.markdown(f"<div class='chat-bot'>{s['bot']}</div>", unsafe_allow_html=True)
# show user answer if exists in classifier_inputs
key = s["id"]
val = st.session_state["classifier_inputs"].get(key)
if val is not None:
st.markdown(f"<div class='chat-user'>{val}</div>", unsafe_allow_html=True)
st.markdown("</div>", unsafe_allow_html=True)
# Render input widget for current step
current = steps[step_idx]
step_id = current["id"]
proceed = False
user_answer = None
cols = st.columns([1,1,1])
with cols[0]:
if current.get("type") == "choice":
choice = st.radio(current["bot"], options=current["choices"], index=0, key=f"cls_{step_id}")
user_answer = choice
elif current.get("type") == "number":
# numeric input without +/- spinner (we use text_input and validate)
raw = st.text_input(current["bot"], value=str(st.session_state["classifier_inputs"].get(step_id,"")), key=f"cls_{step_id}_num")
# validate numeric
try:
if raw.strip() == "":
user_answer = None
else:
user_answer = float(raw)
except:
st.warning("Please enter a valid number (e.g., 12 or 0).")
user_answer = None
elif current.get("type") == "select":
opts = current.get("options", [])
sel = st.selectbox(current["bot"], options=opts, index=0, key=f"cls_{step_id}_sel")
user_answer = sel
else:
# just a message step β€” proceed
user_answer = None
# controls: Next / Back
coln, colb, colsave = st.columns([1,1,1])
with coln:
if st.button("➑️ Next", key=f"next_{step_id}"):
# store answer if provided
if current.get("type") == "number":
if user_answer is None:
st.warning("Please enter a numeric value or enter 0 if unknown.")
else:
st.session_state["classifier_inputs"][step_id] = user_answer
st.session_state["classifier_step"] = min(step_idx+1, len(steps)-1)
st.rerun()
elif current.get("type") in ("choice","select"):
st.session_state["classifier_inputs"][step_id] = user_answer
st.session_state["classifier_step"] = min(step_idx+1, len(steps)-1)
st.rerun()
else:
# message-only step
st.session_state["classifier_step"] = min(step_idx+1, len(steps)-1)
st.rerun()
with colb:
if st.button("⬅️ Back", key=f"back_{step_id}"):
st.session_state["classifier_step"] = max(0, step_idx-1)
st.rerun()
with colsave:
if st.button("πŸ’Ύ Save & Classify now", key="save_and_classify"):
# prepare inputs in required format for classify_uscs_aashto
ci = st.session_state["classifier_inputs"].copy()
# Normalize choices into expected codes
if isinstance(ci.get("dry"), str):
ci["nDS"] = DRY_STRENGTH_MAP.get(ci.get("dry"), 5)
if isinstance(ci.get("dilat"), str):
ci["nDIL"] = DILATANCY_MAP.get(ci.get("dilat"), 6)
if isinstance(ci.get("tough"), str):
ci["nTG"] = TOUGHNESS_MAP.get(ci.get("tough"), 6)
# map 'Yes'/'No' for organic and hasD
ci["opt"] = "y" if ci.get("organic","No")=="Yes" or ci.get("organic",ci.get("organic"))=="Yes" else ci.get("organic","n")
# our field names in CI may differ: convert organic stored under 'organic' step to 'opt'
if "organic" in ci:
ci["opt"] = "y" if ci["organic"]=="Yes" else "n"
# map D entries: D60 etc may be present
# call classification
try:
res_text, aashto, GI, chars, uscs = classify_uscs_aashto(ci)
except Exception as e:
st.error(f"Classification error: {e}")
res_text = f"Error during classification: {e}"
aashto = "N/A"; GI = 0; chars = {}; uscs = "N/A"
# save into active site
site["USCS"] = uscs
site["AASHTO"] = aashto
site["GI"] = GI
site["classifier_inputs"] = ci
site["classifier_decision"] = res_text
st.success("Classification complete. Results saved to site.")
st.write("### Classification Results")
st.markdown(res_text)
# Keep classifier_step at end so user can review
st.session_state["classifier_step"] = len(steps)-1
# GSD Curve Page
def gsd_page():
st.header("πŸ“ˆ Grain Size Distribution (GSD) Curve")
site = st.session_state["sites"][st.session_state["active_site"]]
st.markdown("Enter diameters (mm) and % passing (comma-separated). Use descending diameters (largest to smallest).")
diam_input = st.text_area("Diameters (mm) comma-separated", value=site.get("GSD",{}).get("diameters","75,50,37.5,25,19,12.5,9.5,4.75,2,0.85,0.425,0.25,0.18,0.15,0.075") if site.get("GSD") else "75,50,37.5,25,19,12.5,9.5,4.75,2,0.85,0.425,0.25,0.18,0.15,0.075")
pass_input = st.text_area("% Passing comma-separated", value=site.get("GSD",{}).get("passing","100,98,96,90,85,78,72,65,55,45,35,25,18,14,8") if site.get("GSD") else "100,98,96,90,85,78,72,65,55,45,35,25,18,14,8")
if st.button("Compute GSD & Save"):
try:
diams = [float(x.strip()) for x in diam_input.split(",") if x.strip()]
passing = [float(x.strip()) for x in pass_input.split(",") if x.strip()]
metrics = compute_gsd_metrics(diams, passing)
# plot
fig, ax = plt.subplots(figsize=(7,4))
ax.semilogx(diams, passing, marker='o')
ax.set_xlabel("Particle size (mm)")
ax.set_ylabel("% Passing")
ax.invert_xaxis()
ax.grid(True, which='both', linestyle='--', linewidth=0.5)
ax.set_title("Grain Size Distribution")
st.pyplot(fig)
# save into site
site["GSD"] = {"diameters":diams, "passing":passing, **metrics}
st.success(f"Saved GSD for site. D10={metrics['D10']:.4g} mm, D30={metrics['D30']:.4g} mm, D60={metrics['D60']:.4g} mm")
except Exception as e:
st.error(f"GSD error: {e}")
# OCR Page
def ocr_page():
st.header("πŸ“· OCR β€” extract values from an image")
site = st.session_state["sites"][st.session_state["active_site"]]
if not OCR_AVAILABLE:
st.warning("OCR dependencies not available (pytesseract/PIL). Add pytesseract and pillow to requirements to enable OCR.")
uploaded = st.file_uploader("Upload an image (photo of textbook question or sieve data)", type=["png","jpg","jpeg"])
if uploaded:
if OCR_AVAILABLE:
try:
img = Image.open(uploaded)
st.image(img, caption="Uploaded", use_column_width=True)
text = pytesseract.image_to_string(img)
st.text_area("Extracted text", value=text, height=180)
# Basic parsing: try to find LL, PL, D10 etc via regex
import re
found = {}
for key in ["LL","PL","D10","D30","D60","P2","P4","CBR"]:
pattern = re.compile(rf"{key}[:=]?\s*([0-9]+\.?[0-9]*)", re.I)
m = pattern.search(text)
if m:
found[key] = float(m.group(1))
site.setdefault("classifier_inputs",{})[key] = float(m.group(1))
if found:
st.success(f"Parsed values: {found}")
st.write("Values saved into classifier inputs.")
else:
st.info("No clear numeric matches found automatically.")
except Exception as e:
st.error(f"OCR failed: {e}")
else:
st.warning("OCR not available in this deployment.")
# Locator Page (with Earth Engine auth at top)
import os
import json
import streamlit as st
import geemap.foliumap as geemap
import ee
import matplotlib.pyplot as plt
from datetime import datetime
from io import BytesIO
import base64
from streamlit_folium import st_folium
def locator_page():
"""
Robust locator page:
- Uses your initialize_ee() auth routine (expects EARTHENGINE_TOKEN / SERVICE_ACCOUNT in env)
- Shows interactive map with many basemaps and overlays
- Safe reducers with fallbacks and caching
- Stores results in st.session_state['soil_json'] AND in the active site entry under Earth Engine fields
"""
st.title("🌍 GeoMate Interactive Earth Explorer")
st.markdown(
"Draw a polygon (or rectangle) on the map using the drawing tool. "
"The app will compute regional summaries (soil clay, elevation, seismic, flood occurrence, landcover, NDVI) "
"and save results for reports."
)
# ----------------------------
# Use your existing EE init function if present
EARTHENGINE_TOKEN = os.getenv("EARTHENGINE_TOKEN")
SERVICE_ACCOUNT = os.getenv("SERVICE_ACCOUNT") # optional: service account email
def initialize_ee():
"""Initialize Earth Engine with multiple fallbacks."""
if "ee_initialized" in st.session_state and st.session_state["ee_initialized"]:
return True
if EARTHENGINE_TOKEN and SERVICE_ACCOUNT:
try:
creds = ee.ServiceAccountCredentials(
email=SERVICE_ACCOUNT,
key_data=EARTHENGINE_TOKEN
)
ee.Initialize(creds)
st.session_state["ee_initialized"] = True
return True
except Exception as e:
st.warning(f"Service account init failed: {e} β€” trying default/interactive auth...")
try:
ee.Initialize()
st.session_state["ee_initialized"] = True
return True
except Exception:
try:
ee.Authenticate()
ee.Initialize()
st.session_state["ee_initialized"] = True
return True
except Exception as e:
st.error(f"Earth Engine authentication failed: {e}")
return False
if not initialize_ee():
st.stop()
# ----------------------------
# I assume your file defines initialize_ee() exactly like your earlier message.
try:
init_ok = initialize_ee() # call your auth initializer
except NameError:
st.error("Auth initializer `initialize_ee()` not found. Ensure your auth code exists above this function.")
return
if not init_ok:
return
# ----------------------------
# Helper: safe reducers + caching
# ----------------------------
def safe_get_reduce(region, image, band, scale=1000, default=None, max_pixels=int(1e7)):
"""Return float or None. Uses reduceRegion mean safely."""
cache_key = f"reduce::{region.toGeoJSONString()[:200]}::{str(image)}::{band}::{scale}"
# check cache
cache = st.session_state.setdefault("_ee_cache", {})
if cache_key in cache:
return cache[cache_key]
try:
rr = image.reduceRegion(
reducer=ee.Reducer.mean(),
geometry=region,
scale=int(scale),
maxPixels=int(max_pixels)
)
val = rr.get(band)
if val is None:
cache[cache_key] = default
return default
v = val.getInfo()
if v is None:
cache[cache_key] = default
return default
got = float(v)
cache[cache_key] = got
return got
except Exception as e:
# log to session for debugging if desired
st.session_state.setdefault("_ee_errors", []).append(str(e))
cache[cache_key] = default
return default
def safe_reduce_histogram(region, image, band, scale=1000, max_pixels=int(1e7)):
"""Return a frequency histogram dict or {}."""
cache_key = f"hist::{region.toGeoJSONString()[:200]}::{str(image)}::{band}::{scale}"
cache = st.session_state.setdefault("_ee_cache", {})
if cache_key in cache:
return cache[cache_key]
try:
rr = image.reduceRegion(
reducer=ee.Reducer.frequencyHistogram(),
geometry=region,
scale=int(scale),
maxPixels=int(max_pixels)
)
val = rr.get(band)
if val is None:
cache[cache_key] = {}
return {}
hist = val.getInfo()
if hist is None:
cache[cache_key] = {}
return {}
cache[cache_key] = hist
return hist
except Exception as e:
st.session_state.setdefault("_ee_errors", []).append(str(e))
cache[cache_key] = {}
return {}
def safe_time_series(region, collection, band, start, end, reducer=ee.Reducer.mean(), scale=1000, max_pixels=int(1e7)):
"""Return simple timeseries list of (date, value) for a collection."""
try:
# reduce each image over region, map to list
def per_image(img):
date = img.date().format("YYYY-MM-dd")
val = img.reduceRegion(reducer=reducer, geometry=region, scale=int(scale), maxPixels=int(max_pixels)).get(band)
return ee.Feature(None, {"date": date, "val": val})
feats = collection.filterDate(start, end).map(per_image).filter(ee.Filter.notNull(["val"])).getInfo()
# feats is a dict with 'features' list
points = []
for f in feats.get("features", []):
props = f.get("properties", {})
date = props.get("date")
val = props.get("val")
if val is not None:
try:
points.append((date, float(val)))
except Exception:
pass
return points
except Exception as e:
st.session_state.setdefault("_ee_errors", []).append(str(e))
return []
# ----------------------------
# Map setup
# ----------------------------
m = geemap.Map(center=[28.0, 72.0], zoom=5, draw_export=True)
# enriched basemaps list (many options; geemap will ignore unknown)
basemaps = [
"HYBRID", "ROADMAP", "TERRAIN", "SATELLITE",
"Esri.WorldImagery", "Esri.WorldTopoMap", "Esri.WorldShadedRelief",
"Esri.NatGeoWorldMap", "Esri.OceanBasemap",
"CartoDB.Positron", "CartoDB.DarkMatter",
"Stamen.Terrain", "Stamen.Watercolor",
"OpenStreetMap", "Esri.WorldGrayCanvas", "Esri.WorldStreetMap"
]
for b in basemaps:
try:
m.add_basemap(b)
except Exception:
pass
# ----------------------------
# Datasets (choose stable EE catalog IDs)
# Terrain (DEM) -> prefer NASADEM then SRTM fallback
# ----------------------------
# Try NASADEM (higher quality), fallback to SRTM:
try:
dem = ee.Image("NASA/NASADEM_HGT/001") # NASADEM if available
dem_band_name = "elevation"
except Exception:
dem = ee.Image("USGS/SRTMGL1_003")
dem_band_name = "elevation"
# ----------------------------
# Soil -> use OpenLandMap clay fraction (v02) which provides multiple bands like b0,b10,b30,... and is available
# (fallback to SoilGrids if OpenLandMap missing)
# ----------------------------
soil_img = None
soil_band = "b200" # default deep band
try:
soil_img = ee.Image("OpenLandMap/SOL/SOL_CLAY-WFRACTION_USDA-3A1A1A_M/v02")
# pick default band b200 (100-200cm). Offer depth selection below in UI.
except Exception:
# fallback to SoilGrids if available
try:
soil_img = ee.Image("projects/soilgrids-isric/clay_mean")
# SoilGrids band names like 'clay_0-5cm_mean' etc β€” we will pick a default after UI selection.
soil_band = "clay_0-5cm_mean"
except Exception:
soil_img = None
# ----------------------------
# Seismic -> attempt SEDAC GSHAP, then GEM
# ----------------------------
seismic_img = None
try:
seismic_img = ee.Image("SEDAC/GSHAPSeismicHazard") # band "gshap"
seismic_band = "gshap"
except Exception:
try:
seismic_img = ee.Image("GEM/2015/GlobalSeismicHazard") # may or may not exist
# many GEM products use band b0 etc.
seismic_band = "b0"
except Exception:
seismic_img = None
seismic_band = None
# ----------------------------
# Flood -> JRC Global Surface Water
# ----------------------------
try:
water = ee.Image("JRC/GSW1_4/GlobalSurfaceWater")
water_band = "occurrence"
except Exception:
water = None
water_band = None
# ----------------------------
# Landcover -> ESA WorldCover v200 (10 m) - "Map" band
# ----------------------------
try:
landcover = ee.Image("ESA/WorldCover/v200")
lc_band = "Map"
except Exception:
landcover = None
lc_band = None
# ----------------------------
# NDVI collection (MODIS 1km as robust global product)
# ----------------------------
try:
ndvi_col = ee.ImageCollection("MODIS/061/MOD13A2").select("NDVI")
except Exception:
ndvi_col = None
# ----------------------------
# Add layers to map (visuals)
# ----------------------------
# Add DEM visualization
try:
m.addLayer(dem, {"min": 0, "max": 4000, "palette": ["blue", "green", "brown", "white"]}, "DEM / Topography")
except Exception:
pass
# Add soil view (if available) β€” user will pick depth later
if soil_img:
try:
# show the dataset (choose one band to display; if band missing, geemap will raise β€” catch it)
# prefer b0 or b200 if available; if both missing, show first band
available_bands = soil_img.bandNames().getInfo()
# find a band to display
display_band = soil_band if soil_band in available_bands else available_bands[0]
m.addLayer(soil_img.select(display_band), {"min": 0.0, "max": 0.6, "palette": ["#ffffcc","#c2e699","#78c679","#31a354"]}, f"Soil Clay ({display_band})")
except Exception:
pass
# Seismic
if seismic_img:
try:
# for SEDAC band "gshap" map 0-1
m.addLayer(seismic_img, {"min": 0, "max": 1, "palette": ["white", "yellow", "red"]}, "Seismic Hazard")
except Exception:
pass
# Flood
if water is not None:
try:
m.addLayer(water.select(water_band), {"min":0,"max":100,"palette":["white","blue"]}, "Water Occurrence (JRC)")
except Exception:
pass
# Landcover
if landcover is not None:
try:
m.addLayer(landcover, {"min":10,"max":100,"palette":["#006400","#ffbb22","#ffff4c","#f096ff","#fa0000","#b4b4b4","#f0f0f0","#0064c8","#0096a0","#00cf75"]}, "Landcover (WorldCover)")
except Exception:
pass
# Add country boundaries & graticule
try:
countries = ee.FeatureCollection("USDOS/LSIB_SIMPLE/2017")
m.addLayer(countries.style(**{"color": "black", "fillColor": "00000000", "width": 1}), {}, "Country Boundaries")
except Exception:
pass
try:
m.addLayer(geemap.latlon_grid(5.0, region=ee.Geometry.Rectangle([-180, -90, 180, 90])).style(**{"color":"gray","width":0.5}), {}, "Lat/Lon Grid")
except Exception:
pass
# --------------------------------------------------------------------------
# Section: Display Map, Handle Drawings, and Trigger Computation
# --------------------------------------------------------------------------
st.markdown("πŸ‘‰ Draw a polygon/rectangle on the map (use draw tool). After drawing, click **Compute Summaries**.")
map_data = st_folium(m, height=700, use_container_width=True)
if map_data and map_data.get("last_object"):
st.session_state["roi_geojson"] = json.dumps(map_data["last_object"])
def get_roi_from_map():
if "roi_geojson" in st.session_state and st.session_state["roi_geojson"]:
try:
feature = json.loads(st.session_state["roi_geojson"])
return ee.Geometry(feature['geometry'])
except (json.JSONDecodeError, KeyError, Exception) as e:
st.warning(f"Could not parse the stored ROI. Please try drawing it again. Error: {e}")
del st.session_state["roi_geojson"]
return None
return None
if "compute_button" not in st.session_state:
st.session_state["compute_button"] = False
if st.button("Compute Summaries"):
st.session_state["compute_button"] = True
if st.session_state.get("compute_button", False):
st.session_state["compute_button"] = False
roi = get_roi_from_map()
if roi is None:
st.error("No drawn ROI found. Please draw a polygon or rectangle and press 'Compute Summaries' again.")
else:
st.success("Polygon found β€” computing (this may take a few seconds)...")
# choose soil depth via UI (0-200cm). If soil_img is OpenLandMap provide depth selection; if SoilGrids, show its bands
chosen_soil_band = None
if soil_img is not None:
try:
bands = soil_img.bandNames().getInfo()
# if OpenLandMap bands like b0,b10,... show friendly selector
depth_choice = st.selectbox("Soil depth / band to analyze", options=bands, index=bands.index(soil_band) if soil_band in bands else 0)
chosen_soil_band = depth_choice
except Exception:
chosen_soil_band = None
# compute using safe helpers with conservative maxPixels and reasonable scales
# scales: soil 250-1000m, dem 90-1000m, seismic coarse 5000m, flood 30-250m, landcover 30m
soil_val = None
if soil_img is not None and chosen_soil_band is not None:
soil_val = safe_get_reduce(roi, soil_img.select(chosen_soil_band), chosen_soil_band, scale=1000, default=None, max_pixels=int(5e7))
elev_val = safe_get_reduce(roi, dem, dem_band_name if dem_band_name else "elevation", scale=1000, default=None, max_pixels=int(5e7))
seismic_val = None
if seismic_img is not None and seismic_band is not None:
seismic_val = safe_get_reduce(roi, seismic_img, seismic_band, scale=5000, default=None, max_pixels=int(5e7))
flood_val = None
if water is not None and water_band is not None:
flood_val = safe_get_reduce(roi, water.select(water_band), water_band, scale=30, default=None, max_pixels=int(5e7))
# landcover histogram
lc_stats = {}
if landcover is not None and lc_band is not None:
lc_stats = safe_reduce_histogram(roi, landcover, lc_band, scale=30, max_pixels=int(5e7))
# NDVI timeseries (last 2 years) β€” provide small chart
ndvi_ts = []
if ndvi_col is not None:
end = datetime.utcnow().strftime("%Y-%m-%d")
start = (datetime.utcnow().replace(year=datetime.utcnow().year - 2)).strftime("%Y-%m-%d")
ndvi_ts = safe_time_series(roi, ndvi_col, "NDVI", start, end, reducer=ee.Reducer.mean(), scale=1000, max_pixels=int(5e7))
# ----------------------------
# UI: display numeric summary
# ----------------------------
def pretty(x, fmt="{:.2f}"):
return "N/A" if x is None else fmt.format(x)
st.subheader("πŸ“Š Regional Data Summary")
st.write(f"**Soil ({chosen_soil_band}):** {pretty(soil_val)}")
st.write(f"**Average Elevation:** {pretty(elev_val, '{:.1f}')} m")
st.write(f"**Seismic (mean):** {pretty(seismic_val)}")
st.write(f"**Flood occurrence (mean %):** {pretty(flood_val)}")
# Landcover pie chart (colored)
if lc_stats:
# convert keys into ints if possible (WorldCover class codes)
labels = []
values = []
for k, v in lc_stats.items():
labels.append(str(k))
values.append(v)
fig1, ax1 = plt.subplots(figsize=(6,4))
ax1.pie(values, labels=labels, autopct="%1.1f%%", startangle=90)
ax1.set_title("Landcover Distribution (class codes)")
st.pyplot(fig1)
else:
st.info("No landcover histogram available.")
# NDVI timeseries plot
if ndvi_ts:
dates = [d for d, v in ndvi_ts]
vals = [v for d, v in ndvi_ts]
fig2, ax2 = plt.subplots(figsize=(8,3))
ax2.plot(dates, vals, marker="o")
ax2.set_title("NDVI (mean) β€” last 2 years")
ax2.set_xlabel("Date")
ax2.set_ylabel("NDVI (scaled)")
plt.xticks(rotation=45)
st.pyplot(fig2)
else:
st.info("NDVI timeseries not available or too sparse.")
# Soil histogram (if available)
soil_hist = None
try:
soil_hist = soil_img.reduceRegion(
reducer=ee.Reducer.histogram(maxBuckets=20),
geometry=roi,
scale=1000,
maxPixels=int(5e7)
).get(chosen_soil_band).getInfo() if (soil_img is not None and chosen_soil_band) else None
except Exception:
soil_hist = None
if soil_hist and isinstance(soil_hist, dict) and "bucketMeans" in soil_hist:
fig3, ax3 = plt.subplots(figsize=(6,4))
ax3.bar(soil_hist["bucketMeans"], soil_hist["histogram"], width= (soil_hist["bucketMeans"][1]-soil_hist["bucketMeans"][0]) if len(soil_hist["bucketMeans"])>1 else 1, color="saddlebrown")
ax3.set_title(f"Soil histogram ({chosen_soil_band})")
ax3.set_xlabel("Clay fraction (kg/kg)")
ax3.set_ylabel("Pixel count")
st.pyplot(fig3)
# ----------------------------
# Save results to session_state for reports
# ----------------------------
# Ensure sites and active site exist
if "sites" not in st.session_state or "active_site" not in st.session_state:
# just store soil_json if site structure not present
st.session_state["soil_json"] = {
"Soil": None if soil_val is None else float(soil_val),
"Soil Band": chosen_soil_band,
"Elevation": None if elev_val is None else float(elev_val),
"Seismic": None if seismic_val is None else float(seismic_val),
"Flood": None if flood_val is None else float(flood_val),
"Landcover Stats": lc_stats or {},
"NDVI TS": ndvi_ts or []
}
st.success("Saved results to st.session_state['soil_json']. (No active site present.)")
else:
# Save into active site JSON fields (keeping your field names unchanged)
active = st.session_state["active_site"]
try:
site_obj = st.session_state["sites"][active]
except Exception:
# if your sites is a list of dicts with Site ID matching idx, try to match
try:
site_obj = st.session_state["sites"][int(active)]
except Exception:
site_obj = None
# fallback: if site_obj is None just write soil_json and exit
if site_obj is None:
st.session_state["soil_json"] = {
"Soil": None if soil_val is None else float(soil_val),
"Soil Band": chosen_soil_band,
"Elevation": None if elev_val is None else float(elev_val),
"Seismic": None if seismic_val is None else float(seismic_val),
"Flood": None if flood_val is None else float(flood_val),
"Landcover Stats": lc_stats or {},
"NDVI TS": ndvi_ts or []
}
st.success("Saved results to st.session_state['soil_json']. (Could not find active site object.)")
else:
# update the exact fields you requested (names unchanged)
site_obj["Soil Profile"] = f"{round(soil_val,3)} ({chosen_soil_band})" if soil_val is not None else "No data"
site_obj["Topo Data"] = f"{round(elev_val,2)} m (mean)" if elev_val is not None else "No data"
site_obj["Seismic Data"] = f"{round(seismic_val,4)}" if seismic_val is not None else "No data"
site_obj["Flood Data"] = f"{round(flood_val,2)} %" if flood_val is not None else "No data"
# Environmental Data: combine landcover summary + NDVI basic stats
env_summary = {
"Landcover Histogram": lc_stats or {},
"NDVI_timeseries_points": ndvi_ts or []
}
site_obj["Environmental Data"] = env_summary
# Save drawn polygon GeoJSON for future map restore and report inclusion
try:
# fetch GeoJSON from ROI
geojson = roi.toGeoJSON() if hasattr(roi, "toGeoJSON") else ee.Geometry(roi).getInfo()
site_obj["drawn_polygon"] = geojson
except Exception:
site_obj["drawn_polygon"] = None
# Save to soil_json as well (for report block that expects it)
st.session_state["soil_json"] = {
"Soil": None if soil_val is None else float(soil_val),
"Soil Band": chosen_soil_band,
"Elevation": None if elev_val is None else float(elev_val),
"Seismic": None if seismic_val is None else float(seismic_val),
"Flood": None if flood_val is None else float(flood_val),
"Landcover Stats": lc_stats or {},
"NDVI TS": ndvi_ts or []
}
st.success("πŸ“‘ Results saved to active site and st.session_state['soil_json'] for report integration.")
# Snapshot map as HTML and save path into site object (map snapshot - small HTML content)
try:
snap_html = m.to_html(None) # returns HTML string if path None
# store minimal snapshot content into site or soil_json (may be large; consider storing link)
if "sites" in st.session_state and site_obj is not None:
site_obj["map_snapshot"] = snap_html # caution: large string
st.session_state["last_map_snapshot"] = snap_html
except Exception:
pass
# end of Compute Summaries block
# end locator_page()
# GeoMate Ask (RAG) β€” simple chat with memory per site and auto-extract numeric values
import re, json, pickle
import streamlit as st
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings
# -------------------
# Load FAISS DB once
# -------------------
@st.cache_resource
def load_faiss():
# Adjust path to where you unzip faiss_books_db.zip
faiss_dir = "faiss_books_db"
# embeddings must match the one you used when creating index
embeddings = HuggingFaceEmbeddings(model_name="sentence-transformers/all-MiniLM-L6-v2")
with open(f"{faiss_dir}/index.pkl", "rb") as f:
data = pickle.load(f)
vectorstore = FAISS.load_local(faiss_dir, embeddings, allow_dangerous_deserialization=True)
return vectorstore
vectorstore = load_faiss()
# -------------------
# RAG Chat Page
# -------------------
def rag_page():
st.header("πŸ€– GeoMate Ask (RAG + Groq)")
site = st.session_state["sites"][st.session_state["active_site"]]
# --- Ensure Site ID exists ---
if site.get("Site ID") is None:
site_id = st.session_state["sites"].index(site)
site["Site ID"] = site_id
else:
site_id = site["Site ID"]
# --- Initialize rag_history properly ---
if "rag_history" not in st.session_state:
st.session_state["rag_history"] = {}
if site_id not in st.session_state["rag_history"]:
st.session_state["rag_history"][site_id] = []
# --- Display chat history ---
hist = st.session_state["rag_history"][site_id]
for entry in hist:
who, text = entry.get("who"), entry.get("text")
if who == "bot":
st.markdown(f"<div class='chat-bot'>{text}</div>", unsafe_allow_html=True)
else:
st.markdown(f"<div class='chat-user'>{text}</div>", unsafe_allow_html=True)
# --- User input ---
user_msg = st.text_input("You:", key=f"rag_input_{site_id}")
if st.button("Send", key=f"rag_send_{site_id}"):
if not user_msg.strip():
st.warning("Enter a message.")
else:
# Save user msg
st.session_state["rag_history"][site_id].append(
{"who": "user", "text": user_msg}
)
# --- Retrieve from FAISS ---
docs = vectorstore.similarity_search(user_msg, k=3)
context_text = "\n".join([d.page_content for d in docs])
# --- Build context for LLM ---
context = {
"site": {
k: v
for k, v in site.items()
if k in [
"Site Name",
"lat",
"lon",
"USCS",
"AASHTO",
"GI",
"Load Bearing Capacity",
"Soil Profile",
"Flood Data",
"Seismic Data",
]
},
"chat_history": st.session_state["rag_history"][site_id],
}
prompt = (
f"You are GeoMate AI, an expert geotechnical assistant.\n\n"
f"Relevant references:\n{context_text}\n\n"
f"Site context: {json.dumps(context)}\n\n"
f"User: {user_msg}\n\n"
f"Answer concisely, include citations [ref:source]. "
f"If user provides numeric engineering values, return them in the format: [[FIELD: value unit]]."
)
# Call your Groq model (replace placeholder with real call)
resp = groq_generate(prompt, model=st.session_state["llm_model"], max_tokens=500)
# Save bot reply
st.session_state["rag_history"][site_id].append({"who": "bot", "text": resp})
# Display reply
st.markdown(f"<div class='chat-bot'>{resp}</div>", unsafe_allow_html=True)
# Extract bracketed numeric values
matches = re.findall(
r"\[\[([A-Za-z0-9 _/-]+):\s*([0-9.+-eE]+)\s*([A-Za-z%\/]*)\]\]", resp
)
for m in matches:
field, val, unit = m[0].strip(), m[1].strip(), m[2].strip()
if "bearing" in field.lower():
site["Load Bearing Capacity"] = f"{val} {unit}"
elif "skin" in field.lower():
site["Skin Shear Strength"] = f"{val} {unit}"
elif "compaction" in field.lower():
site["Relative Compaction"] = f"{val} {unit}"
st.success(
"Response saved βœ… with citations and recognized numeric fields auto-stored in site data."
)
# -------------------
# Report fields (still needed in reports_page)
# -------------------
REPORT_FIELDS = [
("Load Bearing Capacity", "kPa or psf"),
("Skin Shear Strength", "kPa"),
("Relative Compaction", "%"),
("Rate of Consolidation", "mm/yr or days"),
("Nature of Construction", "text"),
("Borehole Count", "number"),
("Max Depth (m)", "m"),
("SPT N (avg)", "blows/ft"),
("CBR (%)", "%"),
("Allowable Bearing (kPa)", "kPa"),
]
# -------------------------------
# Imports
# -------------------------------
import io, re, json, tempfile
from datetime import datetime
from typing import Dict, Any, Optional, List
import streamlit as st
from reportlab.platypus import (
SimpleDocTemplate, Paragraph, Spacer, PageBreak, Table, TableStyle, Image as RLImage
)
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib import colors
from reportlab.lib.pagesizes import A4
from reportlab.lib.units import mm
# -------------------------------
# PDF Builder
# -------------------------------
def build_full_geotech_pdf(
site: Dict[str, Any],
filename: str,
include_map_image: Optional[bytes] = None,
ext_refs: Optional[List[str]] = None
):
"""
Build a professional PDF report using site data + references.
"""
styles = getSampleStyleSheet()
title_style = ParagraphStyle(
"title", parent=styles["Title"], fontSize=20, alignment=1,
textColor=colors.HexColor("#FF7A00")
)
h1 = ParagraphStyle(
"h1", parent=styles["Heading1"], fontSize=14,
textColor=colors.HexColor("#1F4E79"), spaceAfter=6
)
body = ParagraphStyle("body", parent=styles["BodyText"], fontSize=10.5, leading=13)
bullet = ParagraphStyle("bullet", parent=body, leftIndent=12, bulletIndent=6)
doc = SimpleDocTemplate(
filename, pagesize=A4,
leftMargin=18*mm, rightMargin=18*mm,
topMargin=18*mm, bottomMargin=18*mm
)
elems = []
# --- Title page ---
elems.append(Paragraph("GEOTECHNICAL INVESTIGATION REPORT", title_style))
elems.append(Spacer(1, 12))
company = site.get("Company Name", "Client / Company: Not provided")
contact = site.get("Company Contact", "")
elems.append(Paragraph(f"<b>{company}</b>", body))
if contact:
elems.append(Paragraph(contact, body))
elems.append(Spacer(1, 12))
elems.append(Paragraph(f"<b>Project:</b> {site.get('Project Name','-')}", body))
elems.append(Paragraph(f"<b>Site:</b> {site.get('Site Name','-')}", body))
elems.append(Paragraph(f"<b>Date:</b> {datetime.today().strftime('%Y-%m-%d')}", body))
elems.append(PageBreak())
# --- Table of contents ---
elems.append(Paragraph("TABLE OF CONTENTS", h1))
toc_items = [
"1.0 Introduction",
"2.0 Site description and geology",
"3.0 Field investigation & laboratory testing",
"4.0 Evaluation of geotechnical properties",
"5.0 Provisional site classification",
"6.0 Recommendations",
"7.0 LLM Analysis",
"8.0 Figures & Tables",
"9.0 Appendices & References"
]
for i, t in enumerate(toc_items, start=1):
elems.append(Paragraph(f"{i}. {t}", body))
elems.append(PageBreak())
# --- Summary ---
elems.append(Paragraph("SUMMARY", h1))
summary_bullets = [
f"Site: {site.get('Site Name','-')}.",
f"General geology: {site.get('Soil Profile','Not provided')}.",
f"Key lab tests: {', '.join([r.get('sampleId','') for r in site.get('Laboratory Results',[])]) if site.get('Laboratory Results') else 'No lab results provided.'}",
f"Classification: USCS = {site.get('USCS','Not provided')}; AASHTO = {site.get('AASHTO','Not provided')}.",
"Primary recommendation: See Recommendations section."
]
for s in summary_bullets:
elems.append(Paragraph(f"β€’ {s}", bullet))
elems.append(PageBreak())
# --- Introduction ---
elems.append(Paragraph("1.0 INTRODUCTION", h1))
intro_text = site.get("Project Description", "Project description not provided.")
elems.append(Paragraph(intro_text, body))
# --- Site description & geology ---
elems.append(Paragraph("2.0 SITE DESCRIPTION AND GEOLOGY", h1))
site_geo = [
f"Topography: {site.get('Topography','Not provided')}",
f"Drainage: {site.get('Drainage','Not provided')}",
f"Current land use: {site.get('Current Land Use','Not provided')}",
f"Regional geology: {site.get('Regional Geology','Not provided')}"
]
for t in site_geo:
elems.append(Paragraph(t, body))
elems.append(PageBreak())
# --- Field & lab testing ---
elems.append(Paragraph("3.0 FIELD INVESTIGATION & LABORATORY TESTING", h1))
if site.get("Field Investigation"):
for item in site["Field Investigation"]:
elems.append(Paragraph(f"<b>{item.get('id','Test')}</b> β€” depth {item.get('depth','-')}", body))
for layer in item.get("layers", []):
elems.append(Paragraph(f"- {layer.get('depth','')} : {layer.get('description','')}", body))
else:
elems.append(Paragraph("No field investigation data supplied.", body))
lab_rows = site.get("Laboratory Results", [])
if lab_rows:
elems.append(Spacer(1, 6))
elems.append(Paragraph("Laboratory Results", h1))
data = [["Sample ID","Material","LL","PI","Linear Shrinkage","%Clay","%Silt","%Sand","%Gravel","Expansiveness"]]
for r in lab_rows:
data.append([
r.get("sampleId","-"), r.get("material","-"),
str(r.get("liquidLimit","-")), str(r.get("plasticityIndex","-")),
str(r.get("linearShrinkage","-")), str(r.get("percentClay","-")),
str(r.get("percentSilt","-")), str(r.get("percentSand","-")),
str(r.get("percentGravel","-")), r.get("potentialExpansiveness","-")
])
t = Table(data, repeatRows=1, colWidths=[40*mm,40*mm,18*mm,18*mm,22*mm,20*mm,20*mm,20*mm,20*mm,30*mm])
t.setStyle(TableStyle([
('BACKGROUND',(0,0),(-1,0),colors.HexColor("#1F4E79")),
('TEXTCOLOR',(0,0),(-1,0),colors.white),
('GRID',(0,0),(-1,-1),0.4,colors.grey),
('BOX',(0,0),(-1,-1),1,colors.HexColor("#FF7A00"))
]))
elems.append(t)
elems.append(PageBreak())
# --- Evaluation & classification ---
elems.append(Paragraph("4.0 EVALUATION OF GEOTECHNICAL PROPERTIES", h1))
elems.append(Paragraph(site.get("Evaluation","Evaluation not provided."), body))
elems.append(Paragraph("5.0 PROVISIONAL SITE CLASSIFICATION", h1))
elems.append(Paragraph(site.get("Provisional Classification","Not provided."), body))
elems.append(Paragraph("6.0 RECOMMENDATIONS", h1))
elems.append(Paragraph(site.get("Recommendations","Not provided."), body))
# --- LLM Analysis ---
elems.append(Paragraph("7.0 LLM ANALYSIS (GeoMate)", h1))
llm_text = site.get("LLM_Report_Text", None)
if llm_text:
elems.append(Paragraph(llm_text.replace("\n","\n\n"), body))
else:
elems.append(Paragraph("No LLM analysis saved for this site.", body))
# --- Map snapshot ---
if include_map_image:
try:
tmp = tempfile.NamedTemporaryFile(delete=False, suffix=".png")
tmp.write(include_map_image)
tmp.flush()
elems.append(PageBreak())
elems.append(Paragraph("Map Snapshot", h1))
elems.append(RLImage(tmp.name, width=160*mm, height=90*mm))
except Exception:
pass
# --- References ---
elems.append(PageBreak())
elems.append(Paragraph("9.0 APPENDICES & REFERENCES", h1))
if ext_refs:
for r in ext_refs:
elems.append(Paragraph(f"- {r}", body))
else:
elems.append(Paragraph("- No external references provided.", body))
doc.build(elems)
return filename
# -------------------------------
# Reports Page
# -------------------------------
def reports_page():
st.header("πŸ“‘ Reports β€” Classification & Full Geotechnical")
site = st.session_state["sites"][st.session_state["active_site"]]
# ---------------- Classification Report ----------------
st.subheader("Classification-only report")
if site.get("classifier_decision"):
st.markdown("You have a saved classification for this site.")
if st.button("Generate Classification PDF"):
fname = f"classification_{site['Site Name'].replace(' ','_')}.pdf"
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4)
elems = []
elems.append(Paragraph("Soil Classification Report", getSampleStyleSheet()['Title']))
elems.append(Spacer(1,6))
elems.append(Paragraph(f"Site: {site.get('Site Name')}", getSampleStyleSheet()['Normal']))
elems.append(Spacer(1,6))
elems.append(Paragraph("Classification result:", getSampleStyleSheet()['Heading2']))
elems.append(Paragraph(site.get("classifier_decision","-"), getSampleStyleSheet()['BodyText']))
# Add FAISS citations if present in rag_history
if "rag_history" in st.session_state and site.get("Site ID") in st.session_state["rag_history"]:
refs = []
for h in st.session_state["rag_history"][site["Site ID"]]:
if h["who"]=="bot" and "[ref:" in h["text"]:
for m in re.findall(r"\[ref:([^\]]+)\]", h["text"]):
refs.append(m)
if refs:
elems.append(Spacer(1,12))
elems.append(Paragraph("References:", getSampleStyleSheet()['Heading2']))
for r in set(refs):
elems.append(Paragraph(f"- {r}", getSampleStyleSheet()['Normal']))
doc.build(elems)
buffer.seek(0)
st.download_button("Download Classification PDF", buffer, file_name=fname, mime="application/pdf")
else:
st.info("No classification saved for this site yet. Use the Classifier page.")
# ---------------- Quick Report Form ----------------
st.markdown("### Quick report form (edit values and request LLM analysis)")
with st.form(key="report_quick_form"):
cols = st.columns([2,1,1])
cols[0].markdown("**Parameter**")
cols[1].markdown("**Value**")
cols[2].markdown("**Unit / Notes**")
inputs = {}
for (fld, unit) in REPORT_FIELDS:
c1, c2, c3 = st.columns([2,1,1])
c1.markdown(f"**{fld}**")
default_val = site.get(fld, "")
inputs[fld] = c2.text_input(fld, value=str(default_val), label_visibility="collapsed", key=f"quick_{fld}")
c3.markdown(unit)
submitted = st.form_submit_button("Save values to site")
if submitted:
for fld, _ in REPORT_FIELDS:
val = inputs.get(fld, "").strip()
site[fld] = val if val != "" else "Not provided"
st.success("Saved quick report values to active site.")
# ---------------- LLM Analysis ----------------
st.markdown("#### LLM-powered analysis")
if st.button("Ask GeoMate (generate analysis & recommendations)"):
context = {
"site_name": site.get("Site Name"),
"project": site.get("Project Name"),
"site_summary": {
"USCS": site.get("USCS"), "AASHTO": site.get("AASHTO"), "GI": site.get("GI"),
"Soil Profile": site.get("Soil Profile"),
"Key lab results": [r.get("sampleId") for r in site.get("Laboratory Results",[])]
},
"inputs": {fld: site.get(fld,"Not provided") for fld,_ in REPORT_FIELDS}
}
prompt = (
"You are GeoMate AI, an engineering assistant. Given the following site context and "
"engineering parameters (some may be 'Not provided'), produce:\n1) short executive summary, "
"2) geotechnical interpretation (classification, key risks), 3) recommended remedial/improvement "
"options and 4) short design notes. Provide any numeric outputs in the format [[FIELD: value unit]].\n\n"
f"Context: {json.dumps(context)}\n\nAnswer concisely and professionally."
)
resp = groq_generate(prompt, model=st.session_state["llm_model"], max_tokens=600)
st.markdown("**GeoMate analysis**")
st.markdown(resp)
matches = re.findall(r"\[\[([A-Za-z0-9 _/-]+):\s*([0-9.+-eE]+)\s*([A-Za-z%\/]*)\]\]", resp)
for m in matches:
field, val, unit = m[0].strip(), m[1].strip(), m[2].strip()
if "bearing" in field.lower():
site["Load Bearing Capacity"] = f"{val} {unit}"
elif "skin" in field.lower():
site["Skin Shear Strength"] = f"{val} {unit}"
elif "compaction" in field.lower():
site["Relative Compaction"] = f"{val} {unit}"
site["LLM_Report_Text"] = resp
st.success("LLM analysis saved to site under 'LLM_Report_Text'.")
# ---------------- Full Report Chatbot ----------------
st.markdown("---")
st.subheader("Full Geotechnical Report (chatbot will gather missing fields)")
if st.button("Start Report Chatbot"):
st.session_state["sites"][st.session_state["active_site"]]["report_convo_state"] = 0
st.rerun()
state = site.get("report_convo_state", -1)
if state >= 0:
st.markdown("Chatbot will ask for missing fields. You can answer or type 'skip' to leave blank.")
show_table = [(f, site.get(f, "Not provided")) for f,_ in REPORT_FIELDS]
st.table(show_table)
if state < len(REPORT_FIELDS):
field, unit = REPORT_FIELDS[state]
ans = st.text_input(f"GeoMate β€” Please provide '{field}' ({unit})", key=f"report_in_{state}")
c1, c2 = st.columns([1,1])
with c1:
if st.button("Submit", key=f"report_submit_{state}"):
site[field] = ans.strip() if ans.strip() not in ("skip","don't know","dont know","na","n/a","") else "Not provided"
site["report_convo_state"] = state + 1
st.rerun()
with c2:
if st.button("Skip", key=f"report_skip_{state}"):
site[field] = "Not provided"
site["report_convo_state"] = state + 1
st.rerun()
else:
st.success("All report questions asked. You can generate the full report now.")
ext_ref_text = st.text_area("Optional: External references (one per line)", value="")
ext_refs = [r.strip() for r in ext_ref_text.splitlines() if r.strip()]
faiss_refs = []
if "rag_history" in st.session_state and site.get("Site ID") in st.session_state["rag_history"]:
for h in st.session_state["rag_history"][site["Site ID"]]:
if h["who"]=="bot" and "[ref:" in h["text"]:
for m in re.findall(r"\[ref:([^\]]+)\]", h["text"]):
faiss_refs.append(m)
all_refs = list(set(ext_refs + faiss_refs))
outname = f"Full_Geotech_Report_{site.get('Site Name','site')}.pdf"
mapimg = site.get("map_snapshot")
build_full_geotech_pdf(site, outname, include_map_image=mapimg, ext_refs=all_refs)
with open(outname, "rb") as f:
st.download_button("Download Full Geotechnical Report", f, file_name=outname, mime="application/pdf")
# 8) Page router
if "page" not in st.session_state:
st.session_state["page"] = "Home"
page = st.session_state["page"]
# Option menu top (main nav)
selected = option_menu(
None,
["Home","Soil recognizer","Classifier","GSD","OCR","Locator","RAG","Reports"],
icons=["house","chart","journal-code","bar-chart","camera","geo-alt","robot","file-earmark-text"],
menu_icon="cast",
default_index=["Home","Soil recognizer","Classifier","GSD","OCR","Locator","RAG","Reports"].index(page) if page in ["Home","Soil recognizer","Classifier","GSD","OCR","Locator","RAG","Reports"] else 0,
orientation="horizontal",
styles={
"container": {"padding":"0px","background-color":"#0b0b0b"},
"nav-link": {"font-size":"14px","color":"#cfcfcf"},
"nav-link-selected": {"background-color":"#FF7A00","color":"white"},
}
)
st.session_state["page"] = selected
page = selected
# Display page content
if page == "Home":
landing_page()
elif page == "Classifier":
soil_classifier_page()
elif page == "GSD":
gsd_page()
elif page == "OCR":
ocr_page()
elif page == "Locator":
locator_page()
elif page == "RAG":
rag_page()
elif page == "Reports":
reports_page()
elif page == "Soil recognizer":
soil_recognizer_page()
else:
landing_page()
# Footer
st.markdown("<hr/>", unsafe_allow_html=True)
st.markdown("<div style='text-align:center;color:#9aa7bf'>GeoMate V2 β€’ AI geotechnical copilot β€’ Built for HF Spaces</div>", unsafe_allow_html=True)