Update app.py
Browse files
app.py
CHANGED
|
@@ -453,98 +453,73 @@ if __name__ == "__main__":
|
|
| 453 |
# - GSD Curve Page (CSV upload + plotting + parameter calc)
|
| 454 |
# -------------------------------------------------------
|
| 455 |
|
| 456 |
-
|
| 457 |
-
|
| 458 |
-
|
| 459 |
|
| 460 |
-
|
| 461 |
-
# Soil Recognizer
|
| 462 |
-
# -------------------------------------------------------
|
| 463 |
-
import torch
|
| 464 |
-
import torch.nn as nn
|
| 465 |
-
import torchvision.models as models
|
| 466 |
-
import torchvision.transforms as transforms
|
| 467 |
-
import streamlit as st
|
| 468 |
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
|
| 473 |
-
|
| 474 |
-
|
| 475 |
-
|
| 476 |
-
|
| 477 |
-
|
| 478 |
-
self.model.fc = nn.Linear(in_features, num_classes)
|
| 479 |
-
|
| 480 |
-
def forward(self, x):
|
| 481 |
-
return self.model(x)
|
| 482 |
-
|
| 483 |
-
# ----------------------------
|
| 484 |
-
# Load Soil Recognition Model
|
| 485 |
-
# ----------------------------
|
| 486 |
-
@st.cache_resource
|
| 487 |
-
def load_soil_model():
|
| 488 |
-
try:
|
| 489 |
-
model = SoilNet(num_classes=5) # adjust num_classes if needed
|
| 490 |
-
state_dict = torch.load("soil_best_model.pth", map_location="cpu")
|
| 491 |
-
model.load_state_dict(state_dict)
|
| 492 |
-
model.eval()
|
| 493 |
-
return model
|
| 494 |
-
except Exception as e:
|
| 495 |
-
st.error(f"⚠️ Could not load soil model: {e}")
|
| 496 |
-
return None
|
| 497 |
|
| 498 |
-
|
|
|
|
| 499 |
|
| 500 |
-
|
| 501 |
-
|
|
|
|
|
|
|
|
|
|
| 502 |
|
| 503 |
-
#
|
| 504 |
-
transform =
|
| 505 |
-
|
| 506 |
-
|
| 507 |
-
|
| 508 |
-
|
| 509 |
-
])
|
|
|
|
| 510 |
|
| 511 |
-
|
| 512 |
-
|
| 513 |
-
|
| 514 |
-
def soil_recognizer_ui():
|
| 515 |
-
st.header("🖼️ Soil Recognizer (Image / OCR)")
|
| 516 |
-
site = get_active_site()
|
| 517 |
|
| 518 |
-
|
|
|
|
|
|
|
| 519 |
|
| 520 |
-
|
| 521 |
-
uploaded = st.file_uploader("Upload soil image", type=["jpg", "jpeg", "png"])
|
| 522 |
-
if uploaded is not None:
|
| 523 |
-
img = Image.open(uploaded).convert("RGB")
|
| 524 |
-
st.image(img, caption="Uploaded soil image", use_column_width=True)
|
| 525 |
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
img_t = transform(img).unsqueeze(0) # add batch dimension
|
| 530 |
-
with torch.no_grad():
|
| 531 |
-
outputs = soil_model(img_t)
|
| 532 |
-
probs = torch.softmax(outputs, dim=1)
|
| 533 |
-
conf, pred = torch.max(probs, 1)
|
| 534 |
-
predicted_class = SOIL_CLASSES[pred.item()]
|
| 535 |
-
confidence = conf.item()
|
| 536 |
-
|
| 537 |
-
# Save to site
|
| 538 |
-
site["Soil Profile"] = predicted_class
|
| 539 |
-
site.setdefault("classifier_inputs", {})["image_confidence"] = confidence
|
| 540 |
-
save_sites(SITES)
|
| 541 |
-
|
| 542 |
-
st.success(f"✅ Predicted: **{predicted_class}** ({confidence:.2%} confidence)")
|
| 543 |
|
| 544 |
-
|
| 545 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 546 |
else:
|
| 547 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 548 |
# -------------------------------------------------------
|
| 549 |
# Soil Classifier
|
| 550 |
# -------------------------------------------------------
|
|
|
|
| 453 |
# - GSD Curve Page (CSV upload + plotting + parameter calc)
|
| 454 |
# -------------------------------------------------------
|
| 455 |
|
| 456 |
+
def soil_recognizer_page():
|
| 457 |
+
st.header("🖼️ Soil Recognizer")
|
| 458 |
+
idx = st.session_state["active_site_idx"]
|
| 459 |
|
| 460 |
+
st.write("Upload a soil sample photo. If a trained model is available, it will infer the soil class.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 461 |
|
| 462 |
+
uploaded = st.file_uploader(
|
| 463 |
+
"Upload sample photo",
|
| 464 |
+
type=["png", "jpg", "jpeg"],
|
| 465 |
+
key=mk("sr_upload", idx)
|
| 466 |
+
)
|
| 467 |
+
|
| 468 |
+
if uploaded:
|
| 469 |
+
img = Image.open(uploaded).convert("RGB")
|
| 470 |
+
st.image(img, use_column_width=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 471 |
|
| 472 |
+
if torch and os.path.exists("soil_best_model.pth"):
|
| 473 |
+
st.info("✅ Model found — running inference (CPU).")
|
| 474 |
|
| 475 |
+
try:
|
| 476 |
+
# --- Load model safely ---
|
| 477 |
+
model = torch.load("soil_best_model.pth", map_location="cpu")
|
| 478 |
+
if hasattr(model, "eval"):
|
| 479 |
+
model.eval()
|
| 480 |
|
| 481 |
+
# --- Preprocess ---
|
| 482 |
+
transform = T.Compose([
|
| 483 |
+
T.Resize((224, 224)),
|
| 484 |
+
T.ToTensor(),
|
| 485 |
+
T.Normalize([0.485, 0.456, 0.406],
|
| 486 |
+
[0.229, 0.224, 0.225])
|
| 487 |
+
])
|
| 488 |
+
inp = transform(img).unsqueeze(0)
|
| 489 |
|
| 490 |
+
with st.spinner("Running model..."):
|
| 491 |
+
logits = model(inp)
|
| 492 |
+
probs = torch.softmax(logits, dim=-1).detach().cpu().numpy()[0]
|
|
|
|
|
|
|
|
|
|
| 493 |
|
| 494 |
+
labels = ["Sand", "Silt", "Clay", "Gravel", "Peat"]
|
| 495 |
+
best = labels[int(np.argmax(probs))]
|
| 496 |
+
conf = float(np.max(probs))
|
| 497 |
|
| 498 |
+
st.success(f"Predicted: **{best}** (confidence {conf:.2%})")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 499 |
|
| 500 |
+
if st.button("Save to site", key=mk("sr_save_btn", idx)):
|
| 501 |
+
st.session_state["sites"][idx]["Soil Profile"] = best
|
| 502 |
+
st.success("✅ Saved soil profile to site.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 503 |
|
| 504 |
+
except Exception as e:
|
| 505 |
+
st.error(f"❌ Model inference failed: {e}")
|
| 506 |
+
|
| 507 |
+
else:
|
| 508 |
+
# --- Heuristic Fallback ---
|
| 509 |
+
st.warning("⚠️ No trained model file found — running heuristic fallback.")
|
| 510 |
+
arr = np.array(img.resize((50, 50))).mean(axis=(0, 1))
|
| 511 |
+
r, g, b = arr
|
| 512 |
+
if r > 120 and g > 110:
|
| 513 |
+
pred = "Sand"
|
| 514 |
else:
|
| 515 |
+
pred = "Silt"
|
| 516 |
+
|
| 517 |
+
st.success(f"Fallback prediction: **{pred}**")
|
| 518 |
+
|
| 519 |
+
if st.button("Save fallback to site", key=mk("sr_save_fallback", idx)):
|
| 520 |
+
st.session_state["sites"][idx]["Soil Profile"] = pred
|
| 521 |
+
st.success("✅ Saved fallback result to site.")
|
| 522 |
+
|
| 523 |
# -------------------------------------------------------
|
| 524 |
# Soil Classifier
|
| 525 |
# -------------------------------------------------------
|