|
|
import gradio as gr |
|
|
import torch |
|
|
from PIL import Image |
|
|
from transformers import AutoTokenizer, AutoModelForCausalLM |
|
|
import spaces |
|
|
|
|
|
|
|
|
MID = "apple/FastVLM-0.5B" |
|
|
IMAGE_TOKEN_INDEX = -200 |
|
|
|
|
|
|
|
|
tok = None |
|
|
model = None |
|
|
|
|
|
def load_model(): |
|
|
global tok, model |
|
|
if tok is None or model is None: |
|
|
print("Loading model...") |
|
|
tok = AutoTokenizer.from_pretrained(MID, trust_remote_code=True) |
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MID, |
|
|
torch_dtype=torch.float16, |
|
|
device_map="cuda", |
|
|
trust_remote_code=True, |
|
|
) |
|
|
print("Model loaded successfully!") |
|
|
return tok, model |
|
|
|
|
|
@spaces.GPU(duration=60) |
|
|
def caption_image(image, custom_prompt=None): |
|
|
""" |
|
|
Generate a caption for the input image. |
|
|
|
|
|
Args: |
|
|
image: PIL Image from Gradio |
|
|
custom_prompt: Optional custom prompt to use instead of default |
|
|
|
|
|
Returns: |
|
|
Generated caption text |
|
|
""" |
|
|
if image is None: |
|
|
return "Please upload an image first." |
|
|
|
|
|
try: |
|
|
|
|
|
tok, model = load_model() |
|
|
|
|
|
if image.mode != "RGB": |
|
|
image = image.convert("RGB") |
|
|
|
|
|
|
|
|
prompt = custom_prompt if custom_prompt else "Describe this image in detail." |
|
|
|
|
|
|
|
|
messages = [ |
|
|
{"role": "user", "content": f"<image>\n{prompt}"} |
|
|
] |
|
|
|
|
|
|
|
|
rendered = tok.apply_chat_template( |
|
|
messages, add_generation_prompt=True, tokenize=False |
|
|
) |
|
|
|
|
|
|
|
|
pre, post = rendered.split("<image>", 1) |
|
|
|
|
|
|
|
|
pre_ids = tok(pre, return_tensors="pt", add_special_tokens=False).input_ids |
|
|
post_ids = tok(post, return_tensors="pt", add_special_tokens=False).input_ids |
|
|
|
|
|
|
|
|
img_tok = torch.tensor([[IMAGE_TOKEN_INDEX]], dtype=pre_ids.dtype) |
|
|
input_ids = torch.cat([pre_ids, img_tok, post_ids], dim=1).to(model.device) |
|
|
attention_mask = torch.ones_like(input_ids, device=model.device) |
|
|
|
|
|
|
|
|
px = model.get_vision_tower().image_processor( |
|
|
images=image, return_tensors="pt" |
|
|
)["pixel_values"] |
|
|
px = px.to(model.device, dtype=model.dtype) |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
out = model.generate( |
|
|
inputs=input_ids, |
|
|
attention_mask=attention_mask, |
|
|
images=px, |
|
|
max_new_tokens=128, |
|
|
do_sample=False, |
|
|
temperature=1.0, |
|
|
) |
|
|
|
|
|
|
|
|
generated_text = tok.decode(out[0], skip_special_tokens=True) |
|
|
|
|
|
|
|
|
if "assistant" in generated_text: |
|
|
response = generated_text.split("assistant")[-1].strip() |
|
|
else: |
|
|
response = generated_text |
|
|
|
|
|
return response |
|
|
|
|
|
except Exception as e: |
|
|
return f"Error generating caption: {str(e)}" |
|
|
|
|
|
|
|
|
with gr.Blocks(title="FastVLM Image Captioning") as demo: |
|
|
gr.Markdown( |
|
|
""" |
|
|
# 🖼️ FastVLM Image Captioning |
|
|
|
|
|
Upload an image to generate a detailed caption using Apple's FastVLM-0.5B model. |
|
|
You can use the default prompt or provide your own custom prompt. |
|
|
""" |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(): |
|
|
image_input = gr.Image( |
|
|
type="pil", |
|
|
label="Upload Image", |
|
|
elem_id="image-upload" |
|
|
) |
|
|
|
|
|
custom_prompt = gr.Textbox( |
|
|
label="Custom Prompt (Optional)", |
|
|
placeholder="Leave empty for default: 'Describe this image in detail.'", |
|
|
lines=2 |
|
|
) |
|
|
|
|
|
with gr.Row(): |
|
|
clear_btn = gr.ClearButton([image_input, custom_prompt]) |
|
|
generate_btn = gr.Button("Generate Caption", variant="primary") |
|
|
|
|
|
with gr.Column(): |
|
|
output = gr.Textbox( |
|
|
label="Generated Caption", |
|
|
lines=8, |
|
|
max_lines=15, |
|
|
show_copy_button=True |
|
|
) |
|
|
|
|
|
|
|
|
generate_btn.click( |
|
|
fn=caption_image, |
|
|
inputs=[image_input, custom_prompt], |
|
|
outputs=output |
|
|
) |
|
|
|
|
|
|
|
|
image_input.change( |
|
|
fn=lambda img, prompt: caption_image(img, prompt) if img is not None and not prompt else None, |
|
|
inputs=[image_input, custom_prompt], |
|
|
outputs=output |
|
|
) |
|
|
|
|
|
gr.Markdown( |
|
|
""" |
|
|
--- |
|
|
**Model:** [apple/FastVLM-0.5B](https://huggingface.co/apple/FastVLM-0.5B) |
|
|
|
|
|
**Note:** This Space uses ZeroGPU for dynamic GPU allocation. |
|
|
""" |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch( |
|
|
share=False, |
|
|
show_error=True, |
|
|
server_name="0.0.0.0", |
|
|
server_port=7860 |
|
|
) |