MarioCap commited on
Commit
b8b25f6
·
verified ·
1 Parent(s): 023407d

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +36 -63
app.py CHANGED
@@ -1,64 +1,37 @@
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
3
-
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
8
-
9
-
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
19
-
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
25
-
26
- messages.append({"role": "user", "content": message})
27
-
28
- response = ""
29
-
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
- ],
60
- )
61
-
62
-
63
- if __name__ == "__main__":
64
- demo.launch()
 
1
  import gradio as gr
2
+ from transformers import AutoTokenizer, AutoModelForCausalLM, pipeline
3
+ from peft import PeftModel
4
+
5
+ # Model names
6
+ base_model_name = "unsloth/qwen2.5-coder-3b-instruct-bnb-4bit"
7
+ lora_model_name = "MarioCap/OCodeR_500-Qwen-2.5-Code-3B"
8
+
9
+ # Load tokenizer and base model
10
+ tokenizer = AutoTokenizer.from_pretrained(base_model_name)
11
+ base_model = AutoModelForCausalLM.from_pretrained(base_model_name, device_map="auto", trust_remote_code=True)
12
+ model = PeftModel.from_pretrained(base_model, lora_model_name)
13
+
14
+ # Create pipeline
15
+ pipe = pipeline("text-generation", model=model, tokenizer=tokenizer)
16
+
17
+ # Chat/inference function
18
+ def generate(prompt, max_new_tokens=200, temperature=0.7):
19
+ response = pipe(prompt, max_new_tokens=max_new_tokens, temperature=temperature, do_sample=True)
20
+ return response[0]['generated_text']
21
+
22
+ # Gradio UI
23
+ with gr.Blocks() as demo:
24
+ gr.Markdown("### 💡 Code Assistant - OCodeR + Qwen 2.5")
25
+ with gr.Row():
26
+ prompt = gr.Textbox(label="Enter your coding prompt", placeholder="Write a Python function to reverse a string...")
27
+ with gr.Row():
28
+ max_tokens = gr.Slider(50, 1024, value=200, step=50, label="Max New Tokens")
29
+ temp = gr.Slider(0.1, 1.5, value=0.7, step=0.1, label="Temperature")
30
+ with gr.Row():
31
+ output = gr.Textbox(label="Generated Output")
32
+ with gr.Row():
33
+ submit = gr.Button("Generate")
34
+
35
+ submit.click(fn=generate, inputs=[prompt, max_tokens, temp], outputs=output)
36
+
37
+ demo.launch()