Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| from functools import partial | |
| from lib.model_zoo.common.get_model import register | |
| version = '0' | |
| symbol = 'clip' | |
| class AbstractEncoder(nn.Module): | |
| def __init__(self): | |
| super().__init__() | |
| def encode(self, *args, **kwargs): | |
| raise NotImplementedError | |
| from transformers import CLIPTokenizer, CLIPTextModel | |
| def disabled_train(self, mode=True): | |
| """Overwrite model.train with this function to make sure train/eval mode | |
| does not change anymore.""" | |
| return self | |
| class FrozenCLIPTextEmbedder(AbstractEncoder): | |
| """Uses the CLIP transformer encoder for text (from huggingface)""" | |
| def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 | |
| super().__init__() | |
| self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
| self.transformer = CLIPTextModel.from_pretrained(version) | |
| self.device = device | |
| self.max_length = max_length # TODO: typical value? | |
| self.freeze() | |
| def freeze(self): | |
| self.transformer = self.transformer.eval() | |
| #self.train = disabled_train | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.device) | |
| outputs = self.transformer(input_ids=tokens) | |
| z = outputs.last_hidden_state | |
| return z | |
| def encode(self, text): | |
| return self(text) | |
| from transformers import CLIPProcessor, CLIPVisionModel | |
| class FrozenCLIPVisionEmbedder(AbstractEncoder): | |
| def __init__(self, version="openai/clip-vit-large-patch14", device="cuda", max_length=77): # clip-vit-base-patch32 | |
| super().__init__() | |
| self.processor = CLIPProcessor.from_pretrained(version) | |
| self.transformer = CLIPVisionModel.from_pretrained(version) | |
| self.device = device | |
| self.max_length = max_length # TODO: typical value? | |
| self.freeze() | |
| def freeze(self): | |
| self.transformer = self.transformer.eval() | |
| #self.train = disabled_train | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, images): | |
| inputs = self.processor(images=images, return_tensors="pt") | |
| pixels = inputs['pixel_values'].to(self.device) | |
| outputs = self.transformer(pixel_values=pixels) | |
| z = outputs.last_hidden_state | |
| return z | |
| def encode(self, image): | |
| return self(image) | |
| from transformers import CLIPModel | |
| class FrozenCLIP(AbstractEncoder): | |
| def __init__(self, | |
| version="openai/clip-vit-large-patch14", | |
| max_length=77, | |
| encode_type='encode_text',): # clip-vit-base-patch32 | |
| super().__init__() | |
| self.tokenizer = CLIPTokenizer.from_pretrained(version) | |
| self.processor = CLIPProcessor.from_pretrained(version) | |
| self.model = CLIPModel.from_pretrained(version) | |
| self.max_length = max_length # TODO: typical value? | |
| self.encode_type = encode_type | |
| self.pinv_text_projection = None | |
| self.freeze() | |
| def get_device(self): | |
| # A trick to get device | |
| return self.model.text_projection.weight.device | |
| def freeze(self): | |
| self.model = self.model.eval() | |
| #self.train = disabled_train | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def encode_text_pooled(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.get_device()) | |
| return self.model.get_text_features(input_ids=tokens) | |
| def encode_vision_pooled(self, images): | |
| inputs = self.processor(images=images, return_tensors="pt") | |
| pixels = inputs['pixel_values'].to(self.get_device()) | |
| return self.model.get_image_features(pixel_values=pixels) | |
| def encode_text_noproj(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.get_device()) | |
| outputs = self.model.text_model(input_ids=tokens) | |
| return outputs.last_hidden_state | |
| def encode_vision_noproj(self, images): | |
| inputs = self.processor(images=images, return_tensors="pt") | |
| pixels = inputs['pixel_values'].to(self.get_device()) | |
| outputs = self.model.vision_model(pixel_values=pixels) | |
| return outputs.last_hidden_state | |
| def encode_text_bug(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.get_device()) | |
| outputs = self.model.text_model(input_ids=tokens) | |
| z = outputs.last_hidden_state | |
| z_pooled = outputs.pooler_output | |
| z = z / torch.norm(z_pooled.unsqueeze(1), dim=-1, keepdim=True) | |
| return self.model.text_projection(z) | |
| def encode_text(self, text): | |
| batch_encoding = self.tokenizer(text, truncation=True, max_length=self.max_length, return_length=True, | |
| return_overflowing_tokens=False, padding="max_length", return_tensors="pt") | |
| tokens = batch_encoding["input_ids"].to(self.get_device()) | |
| outputs = self.model.text_model(input_ids=tokens) | |
| z = self.model.text_projection(outputs.last_hidden_state) | |
| z_pooled = self.model.text_projection(outputs.pooler_output) | |
| z = z / torch.norm(z_pooled.unsqueeze(1), dim=-1, keepdim=True) | |
| return z | |
| def encode_vision(self, images): | |
| z = self.encode_vision_noproj(images) | |
| z = self.model.vision_model.post_layernorm(z) | |
| z = self.model.visual_projection(z) | |
| z_pooled = z[:, 0:1] | |
| # z_pooled_normed = z_pooled / z_pooled.norm(dim=-1, keepdim=True) | |
| z = z / torch.norm(z_pooled, dim=-1, keepdim=True) | |
| return z | |
| def encode_vision_pinvtext(self, images): | |
| blank_text_encode_norm_avg = 28.9096 | |
| z = self.encode_vision(images) | |
| if self.pinv_text_projection is None: | |
| self.pinv_text_projection = torch.linalg.pinv(self.model.text_projection.weight).T | |
| z = torch.matmul(z, self.pinv_text_projection) | |
| # z = z / torch.norm(z[:, 0:1], dim=-1, keepdim=True) | |
| z = z / torch.norm(z, dim=-1, keepdim=True) | |
| z = z*blank_text_encode_norm_avg | |
| # return z[:, 1:2].repeat(1, 77, 1) | |
| z2 = self.encode_text_noproj('') | |
| # z2[:, 1:77] = z[:, 0:76] | |
| return torch.flip(z, dims=(1,))[:, 0:77] | |
| def encode(self, *args, **kwargs): | |
| return getattr(self, self.encode_type)(*args, **kwargs) | |
| ############################# | |
| # copyed from justin's code # | |
| ############################# | |
| class FrozenCLIPVisionEmbedder_Justin(AbstractEncoder): | |
| """ | |
| Uses the CLIP image encoder. | |
| """ | |
| def __init__( | |
| self, | |
| model='ViT-L/14', | |
| jit=False, | |
| device='cuda' if torch.cuda.is_available() else 'cpu', | |
| antialias=False, | |
| ): | |
| super().__init__() | |
| from . import clip_justin | |
| self.model, _ = clip_justin.load(name=model, device=device, jit=jit) | |
| self.device = device | |
| self.antialias = antialias | |
| self.register_buffer('mean', torch.Tensor([0.48145466, 0.4578275, 0.40821073]), persistent=False) | |
| self.register_buffer('std', torch.Tensor([0.26862954, 0.26130258, 0.27577711]), persistent=False) | |
| # I didn't call this originally, but seems like it was frozen anyway | |
| self.freeze() | |
| def freeze(self): | |
| self.transformer = self.model.eval() | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def preprocess(self, x): | |
| import kornia | |
| # Expects inputs in the range -1, 1 | |
| x = kornia.geometry.resize(x, (224, 224), | |
| interpolation='bicubic',align_corners=True, | |
| antialias=self.antialias) | |
| x = (x + 1.) / 2. | |
| # renormalize according to clip | |
| x = kornia.enhance.normalize(x, self.mean, self.std) | |
| return x | |
| def forward(self, x): | |
| # x is assumed to be in range [-1,1] | |
| return self.model.encode_image(self.preprocess(x)).float() | |
| def encode(self, im): | |
| return self(im).unsqueeze(1) | |