Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| import numpy as np | |
| import numpy.random as npr | |
| import copy | |
| from functools import partial | |
| from contextlib import contextmanager | |
| from lib.model_zoo.common.get_model import get_model, register | |
| from lib.log_service import print_log | |
| version = '0' | |
| symbol = 'vd' | |
| from .diffusion_utils import \ | |
| count_params, extract_into_tensor, make_beta_schedule | |
| from .distributions import normal_kl, DiagonalGaussianDistribution | |
| from .autoencoder import AutoencoderKL | |
| from .ema import LitEma | |
| from .sd import highlight_print, DDPM, SD_T2I | |
| class VD_Basic(SD_T2I): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def is_part_of_crossattn(name): | |
| if name.find('.1.norm')!=-1: | |
| return True | |
| if name.find('.1.proj_in')!=-1: | |
| return True | |
| if name.find('.1.transformer_blocks')!=-1: | |
| return True | |
| if name.find('.1.proj_out')!=-1: | |
| return True | |
| return False | |
| self.parameter_group = { | |
| 'context' :[v for n, v in self.model.named_parameters() if is_part_of_crossattn(n)], | |
| 'data' :[v for n, v in self.model.named_parameters() if not is_part_of_crossattn(n)], | |
| } | |
| self.encode_image = None | |
| self.encode_text = None | |
| self._predict_eps_from_xstart = None | |
| self._prior_bpd = None | |
| self.p_mean_variance = None | |
| self.p_sample = None | |
| self.progressive_denoising = None | |
| self.p_sample_loop = None | |
| self.sample = None | |
| def encode_input(self, im): | |
| encoder_posterior = self.first_stage_model.encode(im) | |
| if isinstance(encoder_posterior, DiagonalGaussianDistribution): | |
| z = encoder_posterior.sample() | |
| elif isinstance(encoder_posterior, torch.Tensor): | |
| z = encoder_posterior | |
| else: | |
| raise NotImplementedError("Encoder_posterior of type '{}' not yet implemented".format(type(encoder_posterior))) | |
| return z * self.scale_factor | |
| def decode_latent(self, z): | |
| z = 1. / self.scale_factor * z | |
| return self.first_stage_model.decode(z) | |
| def clip_encode_vision(self, vision, encode_type='encode_vision'): | |
| clip_encode_type = self.cond_stage_model.encode_type | |
| self.cond_stage_model.encode_type = encode_type | |
| if isinstance(vision, torch.Tensor): | |
| vision = ((vision+1)/2).to('cpu').numpy() | |
| vision = np.transpose(vision, (0, 2, 3, 1)) | |
| vision = [vi for vi in vision] | |
| embedding = self.encode_conditioning(vision) | |
| self.cond_stage_model.encode_type = clip_encode_type | |
| return embedding | |
| def encode_conditioning(self, c): | |
| if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
| c = self.cond_stage_model.encode(c) | |
| if isinstance(c, DiagonalGaussianDistribution): | |
| c = c.mode() | |
| else: | |
| c = self.cond_stage_model(c) | |
| return c | |
| # legacy | |
| def get_learned_conditioning(self, c): | |
| return self.encode_conditioning(c) | |
| def forward(self, x, c, noise=None): | |
| t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
| if self.cond_stage_trainable: | |
| c = self.encode_conditioning(c) | |
| return self.p_losses(x, c, t, noise) | |
| class VD_DualContext(SD_T2I): | |
| def __init__(self, *args, **kwargs): | |
| super().__init__(*args, **kwargs) | |
| def is_part_of_trans(name): | |
| if name.find('.1.norm')!=-1: | |
| return True | |
| if name.find('.1.proj_in')!=-1: | |
| return True | |
| if name.find('.1.transformer_blocks')!=-1: | |
| return True | |
| if name.find('.1.proj_out')!=-1: | |
| return True | |
| return False | |
| self.parameter_group = { | |
| 'transformers' : [v for n, v in self.model.named_parameters() if is_part_of_trans(n)], | |
| 'other' :[v for n, v in self.model.named_parameters() if not is_part_of_trans(n)], | |
| } | |
| def apply_model(self, x_noisy, t, cond, cond_type): | |
| if cond_type in ['prompt', 'text']: | |
| which_attn = 0 | |
| elif cond_type in ['vision', 'visual', 'image']: | |
| which_attn = 1 | |
| elif isinstance(cond_type, float): | |
| assert 0 < cond_type < 1, \ | |
| 'A special cond_type that will doing a random mix between two input condition, '\ | |
| 'rand() < cond_type is text, else visual' | |
| which_attn = cond_type | |
| else: | |
| assert False | |
| return self.model.diffusion_model(x_noisy, t, cond, which_attn=which_attn) | |
| def p_losses(self, x_start, cond, t, noise=None, cond_type=None): | |
| noise = torch.randn_like(x_start) if noise is None else noise | |
| x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
| model_output = self.apply_model(x_noisy, t, cond, cond_type=cond_type) | |
| loss_dict = {} | |
| prefix = 'train' if self.training else 'val' | |
| if self.parameterization == "x0": | |
| target = x_start | |
| elif self.parameterization == "eps": | |
| target = noise | |
| else: | |
| raise NotImplementedError() | |
| loss_simple = self.get_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
| loss_dict['loss_simple'] = loss_simple.mean() | |
| logvar_t = self.logvar[t].to(self.device) | |
| loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
| if self.learn_logvar: | |
| loss_dict['loss_gamma'] = loss.mean() | |
| loss_dict['logvar' ] = self.logvar.data.mean() | |
| loss = self.l_simple_weight * loss.mean() | |
| loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3)) | |
| loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
| loss_dict['loss_vlb'] = loss_vlb | |
| loss += (self.original_elbo_weight * loss_vlb) | |
| loss_dict.update({'Loss': loss}) | |
| return loss, loss_dict | |
| def clip_encode_text(self, text): | |
| clip_encode_type = self.cond_stage_model.encode_type | |
| self.cond_stage_model.encode_type = 'encode_text' | |
| embedding = self.get_learned_conditioning(text) | |
| self.cond_stage_model.encode_type = clip_encode_type | |
| return embedding | |
| def clip_encode_vision(self, vision, encode_type='encode_vision'): | |
| clip_encode_type = self.cond_stage_model.encode_type | |
| self.cond_stage_model.encode_type = encode_type | |
| if isinstance(vision, torch.Tensor): | |
| vision = ((vision+1)/2).to('cpu').numpy() | |
| vision = np.transpose(vision, (0, 2, 3, 1)) | |
| vision = [vi for vi in vision] | |
| embedding = self.get_learned_conditioning(vision) | |
| self.cond_stage_model.encode_type = clip_encode_type | |
| return embedding | |
| def get_learned_conditioning(self, c): | |
| if hasattr(self.cond_stage_model, 'encode') and callable(self.cond_stage_model.encode): | |
| c = self.cond_stage_model.encode(c) | |
| if isinstance(c, DiagonalGaussianDistribution): | |
| c = c.mode() | |
| else: | |
| c = self.cond_stage_model(c) | |
| return c | |
| def forward(self, x, c, noise=None, cond_type=None): | |
| t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
| if self.cond_stage_trainable: | |
| c = self.get_learned_conditioning(c) | |
| return self.p_losses(x, c, t, noise, cond_type=cond_type) | |
| class VD(DDPM): | |
| def __init__(self, | |
| autokl_cfg, | |
| optimus_cfg, | |
| clip_cfg, | |
| scale_factor=1.0, | |
| scale_by_std=False, | |
| *args, | |
| **kwargs): | |
| self.scale_by_std = scale_by_std | |
| super().__init__(*args, **kwargs) | |
| self.autokl = get_model()(autokl_cfg) | |
| self.optimus = get_model()(optimus_cfg) | |
| self.clip = get_model()(clip_cfg) | |
| self.concat_mode = 'crossattn' | |
| if not scale_by_std: | |
| self.scale_factor = scale_factor | |
| else: | |
| self.register_buffer('scale_factor', torch.tensor(scale_factor)) | |
| self.device = 'cpu' | |
| self.parameter_group = self.create_parameter_group() | |
| def create_parameter_group(self): | |
| def is_part_of_unet_image(name): | |
| if name.find('.unet_image.')!=-1: | |
| return True | |
| return False | |
| def is_part_of_unet_text(name): | |
| if name.find('.unet_text.')!=-1: | |
| return True | |
| return False | |
| def is_part_of_trans(name): | |
| if name.find('.1.norm')!=-1: | |
| return True | |
| if name.find('.1.proj_in')!=-1: | |
| return True | |
| if name.find('.1.transformer_blocks')!=-1: | |
| return True | |
| if name.find('.1.proj_out')!=-1: | |
| return True | |
| return False | |
| parameter_group = { | |
| 'image_trans' : [], | |
| 'image_rest' : [], | |
| 'text_trans' : [], | |
| 'text_rest' : [], | |
| 'rest' : [],} | |
| for pname, para in self.model.named_parameters(): | |
| if is_part_of_unet_image(pname): | |
| if is_part_of_trans(pname): | |
| parameter_group['image_trans'].append(para) | |
| else: | |
| parameter_group['image_rest'].append(para) | |
| elif is_part_of_unet_text(pname): | |
| if is_part_of_trans(pname): | |
| parameter_group['text_trans'].append(para) | |
| else: | |
| parameter_group['text_rest'].append(para) | |
| else: | |
| parameter_group['rest'].append(para) | |
| return parameter_group | |
| def to(self, device): | |
| self.device = device | |
| super().to(device) | |
| def on_train_batch_start(self, x): | |
| # only for very first batch | |
| if self.scale_by_std: | |
| assert self.scale_factor == 1., \ | |
| 'rather not use custom rescaling and std-rescaling simultaneously' | |
| # set rescale weight to 1./std of encodings | |
| encoder_posterior = self.encode_first_stage(x) | |
| z = self.get_first_stage_encoding(encoder_posterior).detach() | |
| del self.scale_factor | |
| self.register_buffer('scale_factor', 1. / z.flatten().std()) | |
| highlight_print("setting self.scale_factor to {}".format(self.scale_factor)) | |
| def autokl_encode(self, image): | |
| encoder_posterior = self.autokl.encode(image) | |
| z = encoder_posterior.sample() | |
| return self.scale_factor * z | |
| def autokl_decode(self, z): | |
| z = 1. / self.scale_factor * z | |
| return self.autokl.decode(z) | |
| def mask_tokens(inputs, tokenizer, args): | |
| labels = inputs.clone() | |
| # We sample a few tokens in each sequence for masked-LM training (with probability args.mlm_probability defaults to 0.15 in Bert/RoBERTa) | |
| masked_indices = torch.bernoulli(torch.full(labels.shape, args.mlm_probability)).to(torch.uint8) | |
| labels[masked_indices==1] = -1 # We only compute loss on masked tokens | |
| # 80% of the time, we replace masked input tokens with tokenizer.mask_token ([MASK]) | |
| indices_replaced = torch.bernoulli(torch.full(labels.shape, 0.8)).to(torch.uint8) & masked_indices | |
| inputs[indices_replaced] = tokenizer.convert_tokens_to_ids(tokenizer.mask_token) | |
| # 10% of the time, we replace masked input tokens with random word | |
| indices_random = torch.bernoulli(torch.full(labels.shape, 0.5)).to(torch.uint8) & masked_indices & ~indices_replaced | |
| indices_random = indices_random | |
| random_words = torch.randint(len(tokenizer), labels.shape, dtype=torch.long) | |
| inputs[indices_random] = random_words[indices_random] | |
| # The rest of the time (10% of the time) we keep the masked input tokens unchanged | |
| return inputs, labels | |
| def optimus_encode(self, text): | |
| tokenizer = self.optimus.tokenizer_encoder | |
| token = [tokenizer.tokenize(sentence.lower()) for sentence in text] | |
| token_id = [] | |
| for tokeni in token: | |
| token_sentence = [tokenizer._convert_token_to_id(i) for i in tokeni] | |
| token_sentence = tokenizer.add_special_tokens_single_sentence(token_sentence) | |
| token_id.append(torch.LongTensor(token_sentence)) | |
| token_id = torch._C._nn.pad_sequence(token_id, batch_first=True, padding_value=0.0) | |
| token_id = token_id.to(self.device) | |
| z = self.optimus.encoder(token_id, attention_mask=(token_id > 0).float())[1] | |
| z_mu, z_logvar = self.optimus.encoder.linear(z).chunk(2, -1) | |
| # z_sampled = self.optimus.reparameterize(z_mu, z_logvar, 1) | |
| return z_mu.squeeze(1) | |
| def optimus_decode(self, z, temperature=1.0): | |
| bos_token = self.optimus.tokenizer_decoder.encode('<BOS>') | |
| eos_token = self.optimus.tokenizer_decoder.encode('<EOS>') | |
| context_tokens = torch.LongTensor(bos_token).to(z.device) | |
| from .optimus import sample_single_sequence_conditional | |
| sentenses = [] | |
| for zi in z: | |
| out = sample_single_sequence_conditional( | |
| model=self.optimus.decoder, | |
| context=context_tokens, | |
| past=zi, temperature=temperature, | |
| top_k=0, top_p=1.0, | |
| max_length=30, | |
| eos_token = eos_token[0],) | |
| text = self.optimus.tokenizer_decoder.decode(out.tolist(), clean_up_tokenization_spaces=True) | |
| text = text.split()[1:-1] | |
| text = ' '.join(text) | |
| sentenses.append(text) | |
| return sentenses | |
| def clip_encode_text(self, text, encode_type='encode_text'): | |
| swap_type = self.clip.encode_type | |
| self.clip.encode_type = encode_type | |
| embedding = self.clip.encode(text) | |
| self.clip.encode_type = swap_type | |
| return embedding | |
| def clip_encode_vision(self, vision, encode_type='encode_vision'): | |
| swap_type = self.clip.encode_type | |
| self.clip.encode_type = encode_type | |
| if isinstance(vision, torch.Tensor): | |
| vision = ((vision+1)/2).to('cpu').numpy() | |
| vision = np.transpose(vision, (0, 2, 3, 1)) | |
| vision = [vi for vi in vision] | |
| embedding = self.clip.encode(vision) | |
| self.clip.encode_type = swap_type | |
| return embedding | |
| def forward(self, x, c, noise=None, xtype='image', ctype='prompt'): | |
| t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
| return self.p_losses(x, c, t, noise, xtype, ctype) | |
| def apply_model(self, x_noisy, t, cond, xtype='image', ctype='prompt'): | |
| return self.model.diffusion_model(x_noisy, t, cond, xtype, ctype) | |
| def get_image_loss(self, pred, target, mean=True): | |
| if self.loss_type == 'l1': | |
| loss = (target - pred).abs() | |
| if mean: | |
| loss = loss.mean() | |
| elif self.loss_type == 'l2': | |
| if mean: | |
| loss = torch.nn.functional.mse_loss(target, pred) | |
| else: | |
| loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
| else: | |
| raise NotImplementedError("unknown loss type '{loss_type}'") | |
| return loss | |
| def get_text_loss(self, pred, target): | |
| if self.loss_type == 'l1': | |
| loss = (target - pred).abs() | |
| elif self.loss_type == 'l2': | |
| loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
| return loss | |
| def p_losses(self, x_start, cond, t, noise=None, xtype='image', ctype='prompt'): | |
| noise = torch.randn_like(x_start) if noise is None else noise | |
| x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
| model_output = self.apply_model(x_noisy, t, cond, xtype, ctype) | |
| loss_dict = {} | |
| if self.parameterization == "x0": | |
| target = x_start | |
| elif self.parameterization == "eps": | |
| target = noise | |
| else: | |
| raise NotImplementedError() | |
| if xtype == 'image': | |
| loss_simple = self.get_image_loss(model_output, target, mean=False).mean([1, 2, 3]) | |
| elif xtype == 'text': | |
| loss_simple = self.get_text_loss(model_output, target).mean([1]) | |
| logvar_t = self.logvar[t].to(self.device) | |
| if logvar_t.sum().item() != 0: | |
| assert False, "Default SD training has logvar fixed at 0" | |
| if self.learn_logvar: | |
| assert False, "Default SD training don't learn logvar" | |
| if self.l_simple_weight != 1: | |
| assert False, "Default SD training always set l_simple_weight==1" | |
| loss = loss_simple.mean() | |
| loss_dict['loss_simple'] = loss_simple.mean().item() | |
| loss_dict['Loss'] = loss.item() | |
| return loss, loss_dict | |
| def apply_model_dc(self, x_noisy, t, first_c, second_c, xtype='image', first_ctype='vision', second_ctype='prompt', mixed_ratio=0.5): | |
| return self.model.diffusion_model.forward_dc(x_noisy, t, first_c, second_c, xtype, first_ctype, second_ctype, mixed_ratio) |