File size: 18,510 Bytes
ae420f7 523afc6 ae420f7 ee7a14d ae420f7 523afc6 ee7a14d 523afc6 ee7a14d 523afc6 ae420f7 523afc6 ee7a14d 523afc6 ee7a14d 523afc6 ae420f7 523afc6 ae420f7 523afc6 ae420f7 ee7a14d 523afc6 ee7a14d 523afc6 ee7a14d 523afc6 ae420f7 523afc6 ee7a14d 523afc6 ee7a14d 523afc6 ae420f7 523afc6 ae420f7 523afc6 ae420f7 a3309b8 ae420f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 |
"""
Batch processing and PDF generation utilities for Smartwatch Normative Z-Score Calculator.
Author: Lars Masanneck 2026
"""
import pandas as pd
import numpy as np
from io import BytesIO
from reportlab.lib import colors
from reportlab.lib.pagesizes import A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
from reportlab.graphics.shapes import Drawing, Rect, Line, String
# Import from the main normalizer model
import normalizer_model
# Friendly biomarker labels (matching the main app)
BIOMARKER_LABELS = {
"nb_steps": "Number of Steps",
"max_steps": "Maximum Steps",
"mean_active_time": "Mean Active Time",
"sbp": "Systolic Blood Pressure",
"dbp": "Diastolic Blood Pressure",
"sleep_duration": "Sleep Duration",
"avg_night_hr": "Average Night Heart Rate",
"nb_moderate_active_minutes": "Moderate Active Minutes",
"nb_vigorous_active_minutes": "Vigorous Active Minutes",
"weight": "Weight",
"pwv": "Pulse Wave Velocity",
}
# Biomarkers where HIGHER values are BETTER (more is good)
# These get green for high z-scores, concerning colors for low
HIGHER_IS_BETTER = {
"nb_steps",
"max_steps",
"mean_active_time",
"sleep_duration",
"nb_moderate_active_minutes",
"nb_vigorous_active_minutes",
}
# Biomarkers where LOWER values are BETTER (less is good)
# These get green for low z-scores, concerning colors for high
LOWER_IS_BETTER = {
"sbp",
"dbp",
"pwv",
"avg_night_hr",
"weight",
}
# Biomarkers available for batch processing (excluding disabled ones)
AVAILABLE_BIOMARKERS = [
"nb_steps",
"max_steps",
"mean_active_time",
"sleep_duration",
"avg_night_hr",
"nb_moderate_active_minutes",
]
def get_batch_template_df():
"""Return a template DataFrame for batch upload."""
return pd.DataFrame({
"patient_id": ["P001", "P002", "P003"],
"age": [45, 62, 38],
"gender": ["Man", "Woman", "Man"],
"region": ["Western Europe", "Western Europe", "North America"],
"bmi": [24.5, 28.1, 22.3],
"nb_steps": [7500, 4200, 9800],
"sleep_duration": [7.2, 6.5, 8.1],
"avg_night_hr": [62, 68, 58],
})
def process_batch_data(df: pd.DataFrame, normative_df: pd.DataFrame,
biomarkers_to_process: list = None) -> pd.DataFrame:
"""
Process batch data and add z-score and percentile columns for selected biomarkers.
Parameters
----------
df : pd.DataFrame
Input data with patient demographics and biomarker values
normative_df : pd.DataFrame
Normative reference table
biomarkers_to_process : list, optional
List of biomarker columns to process. If None, auto-detect from data.
Returns
-------
pd.DataFrame
Results with z-scores and percentiles added
"""
results = []
# Auto-detect biomarkers if not specified
if biomarkers_to_process is None:
biomarkers_to_process = [col for col in df.columns if col in AVAILABLE_BIOMARKERS]
for _, row in df.iterrows():
result = row.to_dict()
# Process each biomarker
for biomarker in biomarkers_to_process:
if pd.notna(row.get(biomarker)):
try:
res = normalizer_model.compute_normative_position(
value=float(row[biomarker]),
biomarker=biomarker,
age_group=int(row['age']) if pd.notna(row.get('age')) else 45,
region=row.get('region', 'Western Europe'),
gender=row.get('gender', 'Man'),
bmi=float(row.get('bmi', 24.0)) if pd.notna(row.get('bmi')) else 24.0,
normative_df=normative_df,
)
result[f'{biomarker}_z'] = round(res['z_score'], 2)
result[f'{biomarker}_percentile'] = round(res['percentile'], 1)
# Context-aware interpretation (Average = -0.5 to 0.5)
z = res['z_score']
higher_is_better = biomarker in HIGHER_IS_BETTER
if higher_is_better:
# For steps, sleep, activity: high is good
if z < -2:
result[f'{biomarker}_interpretation'] = 'Very Low ⚠️'
elif z < -0.5:
result[f'{biomarker}_interpretation'] = 'Below Average'
elif z < 0.5:
result[f'{biomarker}_interpretation'] = 'Average'
elif z < 2:
result[f'{biomarker}_interpretation'] = 'Above Average ✓'
else:
result[f'{biomarker}_interpretation'] = 'Excellent ✓✓'
else:
# For HR, BP, PWV: low is good
if z < -2:
result[f'{biomarker}_interpretation'] = 'Very Low ✓✓'
elif z < -0.5:
result[f'{biomarker}_interpretation'] = 'Below Average ✓'
elif z < 0.5:
result[f'{biomarker}_interpretation'] = 'Average'
elif z < 2:
result[f'{biomarker}_interpretation'] = 'Above Average'
else:
result[f'{biomarker}_interpretation'] = 'Elevated ⚠️'
except Exception as e:
result[f'{biomarker}_z'] = 'N/A'
result[f'{biomarker}_percentile'] = 'N/A'
result[f'{biomarker}_interpretation'] = f'Error: {str(e)[:30]}'
else:
result[f'{biomarker}_z'] = 'N/A'
result[f'{biomarker}_percentile'] = 'N/A'
result[f'{biomarker}_interpretation'] = 'No data'
results.append(result)
return pd.DataFrame(results)
def create_z_score_gauge(z_score: float, label: str, biomarker: str = None,
width: float = 350, height: float = 100) -> Drawing:
"""Create a horizontal gauge showing z-score position with context-aware coloring."""
d = Drawing(width, height)
gauge_y = 35
gauge_height = 25
gauge_left = 50
gauge_width = width - 100
# Determine if higher is better for this biomarker
higher_is_better = biomarker in HIGHER_IS_BETTER if biomarker else False
if higher_is_better:
# For steps, sleep, activity: LOW is bad (red), HIGH is good (green)
zone_colors = [
(colors.HexColor('#c0392b'), -3), # Red - very low (bad)
(colors.HexColor('#e74c3c'), -2), # Lighter red
(colors.HexColor('#f39c12'), -1), # Orange - below average
(colors.HexColor('#f1c40f'), 0), # Yellow - average
(colors.HexColor('#2ecc71'), 1), # Light green - above average
(colors.HexColor('#27ae60'), 2), # Green - high (good)
]
else:
# For BP, HR, PWV: HIGH is bad (red), LOW is good (green)
zone_colors = [
(colors.HexColor('#27ae60'), -3), # Green - very low (good)
(colors.HexColor('#2ecc71'), -2), # Light green
(colors.HexColor('#f1c40f'), -1), # Yellow - average
(colors.HexColor('#f39c12'), 0), # Orange
(colors.HexColor('#e74c3c'), 1), # Lighter red - elevated
(colors.HexColor('#c0392b'), 2), # Red - high (bad)
]
zone_width = gauge_width / 6
for i, (color, _) in enumerate(zone_colors):
d.add(Rect(gauge_left + i * zone_width, gauge_y, zone_width, gauge_height,
fillColor=color, strokeColor=None))
# Border
d.add(Rect(gauge_left, gauge_y, gauge_width, gauge_height,
fillColor=None, strokeColor=colors.black, strokeWidth=1))
# Marker position (clamp z to -3, 3)
clamped_z = max(-3, min(3, z_score))
marker_x = gauge_left + ((clamped_z + 3) / 6) * gauge_width
# Marker line
d.add(Line(marker_x, gauge_y - 8, marker_x, gauge_y + gauge_height + 8,
strokeColor=colors.black, strokeWidth=3))
# Scale labels
for i, val in enumerate([-3, -2, -1, 0, 1, 2, 3]):
x = gauge_left + (i / 6) * gauge_width
d.add(String(x, gauge_y - 15, str(val), fontSize=9, textAnchor='middle'))
# Title
d.add(String(width / 2, height - 8, label, fontSize=11, textAnchor='middle', fontName='Helvetica-Bold'))
# Z-score value
d.add(String(width / 2, gauge_y + gauge_height + 18, f"Z = {z_score:.2f}",
fontSize=10, textAnchor='middle', fontName='Helvetica-Bold'))
return d
def generate_pdf_report(patient_info: dict, measurements: dict, z_scores: dict = None) -> BytesIO:
"""
Generate a PDF report for a patient with Z-scores and graphs.
Parameters
----------
patient_info : dict
Patient demographics (age, gender, region, bmi)
measurements : dict
Biomarker measurements (biomarker_code: value)
z_scores : dict
Z-score results for each biomarker
Returns
-------
BytesIO
PDF buffer ready for download
"""
buffer = BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=A4, topMargin=0.5*inch, bottomMargin=0.5*inch)
styles = getSampleStyleSheet()
# Orange-themed styles
title_style = ParagraphStyle(
'Title',
parent=styles['Heading1'],
fontSize=18,
spaceAfter=12,
alignment=1,
textColor=colors.HexColor('#d35400')
)
heading_style = ParagraphStyle(
'Heading',
parent=styles['Heading2'],
fontSize=14,
spaceAfter=8,
spaceBefore=12,
textColor=colors.HexColor('#e67e22')
)
normal_style = styles['Normal']
elements = []
# Title
elements.append(Paragraph("Smartwatch Normative Z-Score Report", title_style))
elements.append(Spacer(1, 0.2*inch))
# Patient Information
elements.append(Paragraph("Demographics", heading_style))
patient_data = [
["Age:", f"{patient_info.get('age', 'N/A')} years"],
["Gender:", patient_info.get('gender', 'N/A')],
["Region:", patient_info.get('region', 'N/A')],
["BMI:", f"{patient_info.get('bmi', 'N/A')}"],
]
patient_table = Table(patient_data, colWidths=[2*inch, 4*inch])
patient_table.setStyle(TableStyle([
('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE'),
('BOTTOMPADDING', (0, 0), (-1, -1), 6),
]))
elements.append(patient_table)
elements.append(Spacer(1, 0.2*inch))
# Measurements
if measurements:
elements.append(Paragraph("Measurements", heading_style))
measurements_data = []
for biomarker, value in measurements.items():
label = BIOMARKER_LABELS.get(biomarker, biomarker.replace('_', ' ').title())
measurements_data.append([f"{label}:", f"{value}"])
if measurements_data:
meas_table = Table(measurements_data, colWidths=[2.5*inch, 3.5*inch])
meas_table.setStyle(TableStyle([
('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE'),
('BOTTOMPADDING', (0, 0), (-1, -1), 6),
]))
elements.append(meas_table)
elements.append(Spacer(1, 0.2*inch))
# Z-Score Analysis
if z_scores:
elements.append(Paragraph("Z-Score Analysis", heading_style))
elements.append(Paragraph(
"Z-scores indicate how many standard deviations a measurement is from the population mean. "
"Values between -2 and +2 are typically considered within normal range.",
ParagraphStyle('ZInfo', parent=normal_style, fontSize=9, textColor=colors.grey, spaceAfter=8)
))
# Z-score table
z_data = [["Biomarker", "Value", "Z-Score", "Percentile", "Interpretation"]]
for biomarker, data in z_scores.items():
if isinstance(data, dict) and 'z_score' in data:
z = data['z_score']
pct = data['percentile']
value = measurements.get(biomarker, 'N/A')
label = BIOMARKER_LABELS.get(biomarker, biomarker.replace('_', ' ').title())
# Context-aware interpretation (Average = -0.5 to 0.5)
higher_is_better = biomarker in HIGHER_IS_BETTER
if higher_is_better:
# For steps, sleep, activity: high is good
if z < -2:
interp = "Very Low ⚠️"
elif z < -0.5:
interp = "Below Average"
elif z < 0.5:
interp = "Average"
elif z < 2:
interp = "Above Average ✓"
else:
interp = "Excellent ✓✓"
else:
# For HR, BP, PWV: low is good
if z < -2:
interp = "Very Low ✓✓"
elif z < -0.5:
interp = "Below Average ✓"
elif z < 0.5:
interp = "Average"
elif z < 2:
interp = "Above Average"
else:
interp = "Elevated ⚠️"
z_data.append([label, str(value), f"{z:.2f}", f"{pct:.1f}%", interp])
if len(z_data) > 1:
z_table = Table(z_data, colWidths=[1.5*inch, 1*inch, 0.8*inch, 1*inch, 1.2*inch])
z_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#e67e22')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, -1), 9),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE'),
('GRID', (0, 0), (-1, -1), 0.5, colors.grey),
('BOTTOMPADDING', (0, 0), (-1, -1), 6),
('TOPPADDING', (0, 0), (-1, -1), 6),
]))
elements.append(z_table)
elements.append(Spacer(1, 0.15*inch))
# Add Z-score gauges with context-aware coloring
for biomarker, data in z_scores.items():
if isinstance(data, dict) and 'z_score' in data:
label = BIOMARKER_LABELS.get(biomarker, biomarker.replace('_', ' ').title())
gauge = create_z_score_gauge(data['z_score'], label, biomarker=biomarker)
elements.append(gauge)
elements.append(Spacer(1, 0.1*inch))
elements.append(Spacer(1, 0.2*inch))
# Cohort Information
elements.append(Paragraph("Reference Population", heading_style))
cohort_text = (
f"Z-scores calculated using normative data from Withings users in "
f"{patient_info.get('region', 'Western Europe')}, filtered by gender "
f"({patient_info.get('gender', 'N/A')}), age group, and BMI category."
)
elements.append(Paragraph(cohort_text, normal_style))
elements.append(Spacer(1, 0.2*inch))
# Z-Score Classification Guide
elements.append(Paragraph("Z-Score Classification Guide", heading_style))
classification_data = [
["Z-Score Range", "Classification", "Percentile"],
["z < -2.0", "Very Low", "< 2.3%"],
["-2.0 ≤ z < -0.5", "Below Average", "2.3% - 30.9%"],
["-0.5 ≤ z < 0.5", "Average", "30.9% - 69.1%"],
["0.5 ≤ z < 2.0", "Above Average", "69.1% - 97.7%"],
["z ≥ 2.0", "Very High", "> 97.7%"],
]
class_table = Table(classification_data, colWidths=[1.8*inch, 1.5*inch, 1.5*inch])
class_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#e67e22')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, -1), 9),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('VALIGN', (0, 0), (-1, -1), 'MIDDLE'),
('GRID', (0, 0), (-1, -1), 0.5, colors.grey),
('BOTTOMPADDING', (0, 0), (-1, -1), 6),
('TOPPADDING', (0, 0), (-1, -1), 6),
# Highlight the "Average" row
('BACKGROUND', (0, 3), (-1, 3), colors.HexColor('#fef9e7')),
]))
elements.append(class_table)
elements.append(Spacer(1, 0.1*inch))
context_note = Paragraph(
"<b>Context:</b> For steps, sleep, and activity - higher is better. "
"For heart rate - lower resting values are better. "
"A z-score of 0 = population average for your demographic group.",
ParagraphStyle('ContextNote', parent=normal_style, fontSize=8, textColor=colors.HexColor('#555555'))
)
elements.append(context_note)
elements.append(Spacer(1, 0.2*inch))
# Disclaimer
disclaimer = Paragraph(
"<i>This report is for educational and research purposes only. Z-scores are based on "
"Withings population data and may not reflect clinical reference ranges. For detailed "
"questions regarding personal health data, contact your healthcare professionals.</i>",
ParagraphStyle('Disclaimer', parent=normal_style, fontSize=8, textColor=colors.grey)
)
elements.append(disclaimer)
# Footer
elements.append(Spacer(1, 0.2*inch))
footer = Paragraph(
"Built with ❤️ in Düsseldorf. © Lars Masanneck 2026.",
ParagraphStyle('Footer', parent=normal_style, fontSize=8, textColor=colors.grey, alignment=1)
)
elements.append(footer)
doc.build(elements)
buffer.seek(0)
return buffer
|