File size: 13,555 Bytes
04428af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
"""
normative_calculator.py - v2
Utility functions for computing z-scores and percentiles for any biomarker
contained in *Table_1_summary_measure.xlsx*.
Author: Lars Masanneck 06-05-2025
"""
from __future__ import annotations
import math
import pathlib
import warnings
from typing import Dict, Iterable, List, Sequence, Union
import pandas as pd
from scipy import stats
from datetime import datetime
###############################################################################
# Public API (re-exported in __all__)
###############################################################################
__all__ = [
"load_normative_table",
"compute_normative_position",
"add_normative_columns",
"categorize_bmi",
"compute_skew_corrected_position",
]
###############################################################################
# Constant category mappings
###############################################################################
# BMI categories (WHO definition)
_BMI_BOUNDS: List[tuple[float, float, str]] = [
(0, 18.5, "Underweight"),
(18.5, 25, "Healthy"),
(25, 30, "Overweight"),
(30, math.inf, "Obesity"),
]
###############################################################################
# Helper functions – categories & loading
###############################################################################
def _categorize(value: float, bounds: Sequence[tuple]) -> str:
"""Return category *label* for *value* given (lower, upper, label) tuples."""
for lower, upper, label in bounds:
if lower <= value < upper:
return label
raise ValueError(f"{value} outside defined bounds.")
def categorize_bmi(bmi: Union[str, float]) -> str:
"""Map numeric BMI to the table's BMI category strings."""
if isinstance(bmi, str):
return bmi.strip().capitalize()
return _categorize(float(bmi), _BMI_BOUNDS)
def _categorize_age(age: Union[str, int], normative_df: pd.DataFrame) -> str:
"""Return an age‐group string for a numeric age, or pass through if already a string."""
if isinstance(age, str):
return age.strip()
for grp in normative_df["Age"].unique():
grp = grp.strip()
if "-" in grp:
lo, hi = grp.split("-", 1)
try:
lo_i, hi_i = int(lo), int(hi)
except ValueError:
continue
if lo_i <= age <= hi_i:
return grp
elif grp.endswith("+"):
try:
lo_i = int(grp[:-1])
except ValueError:
continue
if age >= lo_i:
return grp
raise ValueError(f"No normative age group found for age {age!r}.")
def load_normative_table(path):
path = pathlib.Path(path)
if not path.exists():
raise FileNotFoundError(path)
# columns to keep as strings
str_cols = ["Age", "area", "gender", "Bmi", "Biomarkers", "nb_category"]
# columns to cast to floats (recovering numbers from any date‐formatted cells)
float_cols = [
"min",
"max",
"median",
"q1",
"q3",
"iqr",
"mad",
"mean",
"sd",
"se",
"ci",
]
def parse_num(x):
# Excel‐formatted dates get parsed into datetime; map back to original float:
if isinstance(x, datetime):
# if year is in the future (e.g. 3183 → original was 3183.xx),
# treat year as integer part and month as two‐digit fractional
if x.year > datetime.now().year:
return x.year + x.month / 100
# otherwise (small numbers like 5.06 → parsed as 2025-06-05),
# use day as integer and month as two‐digit fractional
return x.day + x.month / 100
# non‐dates: just a normal float cast (coerce errors to NA)
try:
return float(x)
except Exception:
return pd.NA
# build your converters
converters = {col: str for col in str_cols}
converters.update({col: parse_num for col in float_cols})
# read the normative table (Excel or CSV) with our converters
if path.suffix.lower() == ".csv":
df = pd.read_csv(path, converters=converters)
else:
df = pd.read_excel(path, converters=converters)
# ensure string cols are truly str dtype
for c in str_cols:
df[c] = df[c].astype(str)
df.columns = df.columns.str.strip()
return df
###############################################################################
# Core calculus
###############################################################################
def _extract_stats(
normative_df: pd.DataFrame,
biomarker: str,
age_group: str,
region: str,
gender: str,
bmi_category: str,
) -> Dict[str, Union[float, str]]:
"""Return all summary statistics for the requested stratum."""
mask = (
(normative_df["Biomarkers"].str.lower() == biomarker.lower())
& (normative_df["Age"].str.lower() == age_group.lower())
& (normative_df["area"].str.lower() == region.lower())
& (normative_df["gender"].str.lower() == gender.lower())
& (normative_df["Bmi"].str.lower() == bmi_category.lower())
)
subset = normative_df.loc[mask]
if subset.empty:
raise KeyError("No normative stats found for the specified stratum.")
if len(subset) > 1:
warnings.warn(
"Multiple normative rows found; using the first one (check your table)."
)
row = subset.iloc[0]
# Some versions of the table label sample size as "n" instead of "nb_category"
n_col = "nb_category" if "nb_category" in row else "n"
n_raw = row[n_col]
n = str(row[n_col])
return {
"median": float(row["median"]),
"q1": float(row["q1"]),
"q3": float(row["q3"]),
"iqr": float(row["iqr"]),
"mad": float(row["mad"]),
"mean": float(row["mean"]),
"sd": float(row["sd"]),
"se": float(row["se"]),
"ci": float(row["ci"]),
"n": n,
}
def z_score(value: float, mean: float, sd: float) -> float:
"""Compute z-score; returns NaN if SD is 0."""
if sd == 0:
return float("nan")
return (value - mean) / sd
def percentile_from_z(z: float) -> float:
"""Convert z-score to percentile (0-100)."""
return float(stats.norm.cdf(z) * 100)
def compute_normative_position(
*,
value: float,
biomarker: str,
age_group: Union[str, int],
region: str,
gender: str,
bmi: Union[str, float],
normative_df: pd.DataFrame,
) -> Dict[str, Union[float, str]]:
"""
Compute where a single measurement falls relative to a normative distribution.
Parameters
----------
value : float
Raw measurement for the specified biomarker.
biomarker : str
Name of the biomarker (must match a value in the "Biomarkers" column
of `normative_df`).
age_group : Union[str, int]
Either:
- A string age-group label (e.g. "40-49") matching `normative_df["Age"]`, or
- An integer age, which will be mapped into the correct age-group bracket.
region : str
Region name matching `normative_df["area"]` (case-insensitive).
gender : str
Gender label matching `normative_df["gender"]` (case-insensitive).
bmi : Union[str, float]
Either:
- A string BMI category (e.g. "Healthy"), or
- A numeric BMI value, which will be bucketed into WHO categories.
normative_df : pd.DataFrame
Table of normative summary statistics as returned by `load_normative_table`.
Returns
-------
Dict[str, Union[float, str]]
A dictionary containing:
- "z_score" (float): the computed z-score,
- "percentile" (float): the percentile (0–100),
- "mean" (float): the normative mean,
- "sd" (float): the normative standard deviation,
- "n" (str): the sample-size category string from the normative table.
- "median" (float): the normative median,
- "q1" (float): the first quartile,
- "q3" (float): the third quartile,
- "iqr" (float): the interquartile range,
- "mad" (float): the median absolute deviation,
- "se" (float): the standard error,
- "ci" (float): the confidence interval.
Raises
------
KeyError
If no matching stratum is found in `normative_df`.
ValueError
If an integer `age_group` cannot be mapped to any age bracket.
"""
# allow numeric age inputs by mapping them to the correct "Age" group
age_group_str = _categorize_age(age_group, normative_df)
bmi_cat = categorize_bmi(bmi)
stats_d = _extract_stats(
normative_df=normative_df,
biomarker=biomarker,
age_group=age_group_str,
region=region,
gender=gender,
bmi_category=bmi_cat,
)
z = z_score(value, stats_d["mean"], stats_d["sd"])
pct = percentile_from_z(z)
return {
"z_score": z,
"percentile": pct,
"mean": stats_d["mean"],
"sd": stats_d["sd"],
"n": stats_d["n"],
"median": stats_d["median"],
"q1": stats_d["q1"],
"q3": stats_d["q3"],
"iqr": stats_d["iqr"],
"mad": stats_d["mad"],
"se": stats_d["se"],
"ci": stats_d["ci"],
}
###############################################################################
# Batch processing helper
###############################################################################
def _compute_for_row(
row: pd.Series,
biomarker: str,
normative_df: pd.DataFrame,
age_col: str,
region_col: str,
gender_col: str,
bmi_col: str,
value_col: str,
):
try:
res = compute_normative_position(
value=row[value_col],
biomarker=biomarker,
age_group=row[age_col],
region=row[region_col],
gender=row[gender_col],
bmi=row[bmi_col],
normative_df=normative_df,
)
return pd.Series(
[res["z_score"], res["percentile"]],
index=[f"{biomarker}_z", f"{biomarker}_pct"],
)
except Exception as exc: # pragma: no cover
warnings.warn(str(exc))
return pd.Series(
[float("nan"), float("nan")], index=[f"{biomarker}_z", f"{biomarker}_pct"]
)
def add_normative_columns(
df: pd.DataFrame,
*,
biomarkers: Iterable[str],
normative_df: pd.DataFrame,
age_col: str = "Age",
region_col: str = "area",
gender_col: str = "gender",
bmi_col: str = "Bmi",
value_cols: dict[str, str] | None = None,
output_prefixes: dict[str, str] | None = None,
) -> pd.DataFrame:
"""
Append z-score and percentile columns for multiple biomarkers, with optional
custom prefixes for the output column names.
Parameters
----------
df : pd.DataFrame
Participant-level data, must include demographic columns and raw biomarker
values.
biomarkers : Iterable[str]
List of biomarker names to process.
normative_df : pd.DataFrame
Normative summary table as loaded by `load_normative_table`.
age_col : str, default "Age"
Column in `df` containing age-group labels or integer ages.
region_col : str, default "area"
Column in `df` matching the "area" field in `normative_df`.
gender_col : str, default "gender"
Column in `df` matching the "gender" field in `normative_df`.
bmi_col : str, default "Bmi"
Column in `df` containing BMI values or categories.
value_cols : dict[str, str], optional
Mapping from each biomarker name to the column in `df` that holds its
raw numeric value. Defaults to identity mapping.
output_prefixes : dict[str, str], optional
Mapping from each biomarker name to the prefix to use for the output
columns. Defaults to using the biomarker name itself.
Returns
-------
pd.DataFrame
A copy of `df` with two new columns for each biomarker:
`<prefix>_z` and `<prefix>_pct`.
"""
value_cols = value_cols or {bm: bm for bm in biomarkers}
output_prefixes = output_prefixes or {}
out = df.copy()
for bm in biomarkers:
prefix = output_prefixes.get(bm, bm)
out[[f"{prefix}_z", f"{prefix}_pct"]] = df.apply(
_compute_for_row,
axis=1,
biomarker=bm,
normative_df=normative_df,
age_col=age_col,
region_col=region_col,
gender_col=gender_col,
bmi_col=bmi_col,
value_col=value_cols[bm],
)
return out
# Add a function for skew-corrected z-score calculation
def compute_skew_corrected_position(
value: float, mean: float, sd: float, median: float
) -> dict[str, float]:
"""Compute skew-corrected z-score and percentile using Pearson Type III distribution."""
# Pearson's moment coefficient of skewness
if sd == 0:
skewness = float("nan")
else:
skewness = 3 * (mean - median) / sd
# Build Pearson Type III distribution (gamma-based)
dist = stats.pearson3(skewness, loc=mean, scale=sd)
# Compute percentile under skewed model
p = dist.cdf(value)
# Back-transform to standard normal z-score
z_corr = stats.norm.ppf(p)
return {"z_skew_corrected": z_corr, "percentile_skew_corrected": float(p * 100)}
|