File size: 11,503 Bytes
ae420f7 523afc6 ae420f7 ee7a14d 523afc6 ee7a14d 523afc6 ee7a14d 523afc6 ae420f7 523afc6 ee7a14d 523afc6 ee7a14d 523afc6 ae420f7 a3309b8 ae420f7 a3309b8 ae420f7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 |
"""
PDF Report Generator page for Smartwatch Normative Z-Score Calculator.
Generate downloadable PDF reports for individual patients.
"""
import streamlit as st
import sys
import os
# Add parent directory to path for imports
sys.path.insert(0, os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from batch_utils import generate_pdf_report, BIOMARKER_LABELS, AVAILABLE_BIOMARKERS, HIGHER_IS_BETTER
import normalizer_model
st.set_page_config(
page_title="PDF Report - Smartwatch Z-Score Calculator",
page_icon="📄",
layout="wide",
)
# Load normative data
DATA_PATH = os.path.join(os.path.dirname(os.path.dirname(os.path.abspath(__file__))), "Table_1_summary_measure.csv")
@st.cache_data
def get_normative_data():
try:
return normalizer_model.load_normative_table(DATA_PATH)
except Exception as e:
st.error(f"Could not load normative data: {e}")
return None
normative_df = get_normative_data()
st.title("📄 PDF Report Generator")
st.markdown("**Generate a professional smartwatch biomarker report for download**")
st.info(
"Enter patient information and biomarker measurements below to generate a downloadable PDF report "
"with z-scores, percentiles, and visual gauges."
)
col1, col2 = st.columns(2)
with col1:
st.subheader("👤 Patient Information")
patient_name = st.text_input(
"Patient Name/ID (optional)",
placeholder="e.g., John Doe or P001"
)
# Region with default Western Europe
if normative_df is not None:
regions = sorted(normative_df["area"].unique())
if "Western Europe" in regions:
default_region_idx = regions.index("Western Europe")
else:
default_region_idx = 0
else:
regions = ["Western Europe", "Southern Europe", "North America", "Japan"]
default_region_idx = 0
region = st.selectbox(
"Region",
regions,
index=default_region_idx
)
# Gender
if normative_df is not None:
genders = sorted(normative_df["gender"].unique())
else:
genders = ["Man", "Woman"]
gender = st.selectbox("Gender", genders)
age = st.number_input(
"Age (years)",
min_value=0,
max_value=120,
value=45
)
bmi = st.number_input(
"BMI",
min_value=10.0,
max_value=60.0,
value=24.0,
step=0.1,
format="%.1f"
)
with col2:
st.subheader("📊 Biomarker Measurements")
st.caption("Select which biomarkers to include in the report")
# Biomarker inputs with checkboxes
measurements = {}
include_steps = st.checkbox("Include Number of Steps", value=True)
if include_steps:
measurements['nb_steps'] = st.number_input(
"Number of Steps",
min_value=0.0,
max_value=50000.0,
value=6500.0,
step=100.0
)
include_sleep = st.checkbox("Include Sleep Duration", value=True)
if include_sleep:
measurements['sleep_duration'] = st.number_input(
"Sleep Duration (hours)",
min_value=0.0,
max_value=24.0,
value=7.5,
step=0.1,
format="%.1f"
)
include_hr = st.checkbox("Include Average Night Heart Rate", value=True)
if include_hr:
measurements['avg_night_hr'] = st.number_input(
"Average Night Heart Rate (bpm)",
min_value=30.0,
max_value=150.0,
value=62.0,
step=1.0
)
include_active = st.checkbox("Include Mean Active Time", value=False)
if include_active:
measurements['mean_active_time'] = st.number_input(
"Mean Active Time (minutes)",
min_value=0.0,
max_value=1440.0,
value=45.0,
step=1.0
)
include_moderate = st.checkbox("Include Moderate Active Minutes", value=False)
if include_moderate:
measurements['nb_moderate_active_minutes'] = st.number_input(
"Moderate Active Minutes",
min_value=0.0,
max_value=1440.0,
value=30.0,
step=1.0
)
st.markdown("---")
# Generate Report Button
if st.button("📄 Generate PDF Report", type="primary"):
if not measurements:
st.error("Please include at least one biomarker measurement.")
elif normative_df is None:
st.error("Normative data not loaded. Cannot generate report.")
else:
patient_info = {
'name': patient_name if patient_name else 'Not specified',
'age': age,
'gender': gender,
'region': region,
'bmi': bmi
}
# Calculate z-scores for each included biomarker
z_scores = {}
errors = []
for biomarker, value in measurements.items():
try:
result = normalizer_model.compute_normative_position(
value=value,
biomarker=biomarker,
age_group=age,
region=region,
gender=gender,
bmi=bmi,
normative_df=normative_df
)
z_scores[biomarker] = result
except Exception as e:
errors.append(f"{BIOMARKER_LABELS.get(biomarker, biomarker)}: {str(e)}")
if errors:
for err in errors:
st.warning(f"Z-score calculation note: {err}")
if z_scores:
with st.spinner("Generating PDF report..."):
pdf_buffer = generate_pdf_report(patient_info, measurements, z_scores)
st.success("✅ PDF report generated successfully!")
# Report Preview
st.subheader("Report Preview")
with st.expander("View Report Contents", expanded=True):
st.markdown("### Demographics")
st.markdown(f"- **Age:** {age} years")
st.markdown(f"- **Gender:** {gender}")
st.markdown(f"- **Region:** {region}")
st.markdown(f"- **BMI:** {bmi}")
st.markdown("### Measurements & Z-Scores")
# Create columns for z-score display
num_scores = len(z_scores)
if num_scores > 0:
cols = st.columns(min(num_scores, 3))
for idx, (biomarker, data) in enumerate(z_scores.items()):
with cols[idx % 3]:
label = BIOMARKER_LABELS.get(biomarker, biomarker)
z = data['z_score']
pct = data['percentile']
value = measurements[biomarker]
# Context-aware interpretation (Average = -0.5 to 0.5)
higher_is_better = biomarker in HIGHER_IS_BETTER
if higher_is_better:
# For steps, sleep, activity: high is good
if z < -2:
interp = "Very Low ⚠️"
elif z < -0.5:
interp = "Below Average"
elif z < 0.5:
interp = "Average"
elif z < 2:
interp = "Above Average ✓"
else:
interp = "Excellent ✓✓"
else:
# For HR: low is good
if z < -2:
interp = "Very Low ✓✓"
elif z < -0.5:
interp = "Below Average ✓"
elif z < 0.5:
interp = "Average"
elif z < 2:
interp = "Above Average"
else:
interp = "Elevated ⚠️"
st.metric(
label,
f"Z = {z:.2f}",
f"{pct:.1f}th percentile"
)
st.caption(f"Value: {value} | {interp}")
# Cohort info
age_group_str = normalizer_model._categorize_age(age, normative_df)
bmi_cat = normalizer_model.categorize_bmi(bmi)
st.markdown("### Reference Population")
st.markdown(
f"Z-scores calculated from normative data: **{region}**, "
f"**{gender}**, age group **{age_group_str}**, BMI category **{bmi_cat}**."
)
# Download button
filename = f"smartwatch_report_{patient_name.replace(' ', '_') if patient_name else 'patient'}.pdf"
st.download_button(
label="⬇️ Download PDF Report",
data=pdf_buffer,
file_name=filename,
mime="application/pdf"
)
else:
st.error("Could not calculate z-scores for any biomarkers. Please check your inputs.")
# Information section
st.markdown("---")
st.markdown("### Report Contents")
st.markdown("""
The generated PDF report includes:
1. **Patient Demographics** - Age, gender, region, BMI
2. **Biomarker Measurements** - All selected smartwatch metrics
3. **Z-Score Analysis** - Comparison to normative population data
- Z-scores and percentiles for each biomarker
- Visual gauge charts showing position in distribution
- Interpretation (Very Low → Average → Very High)
4. **Reference Population Info** - Details about the comparison cohort
5. **Classification Guide** - Explanation of z-score interpretation
*All reports include a disclaimer noting educational/research purpose.*
""")
# Z-Score Classification Guide
with st.expander("📊 Z-Score Classification Guide"):
st.markdown("""
**How to interpret Z-Scores:**
| Z-Score Range | Classification | Percentile Range |
|:-------------:|:--------------:|:----------------:|
| z < -2.0 | Very Low | < 2.3% |
| -2.0 ≤ z < -0.5 | Below Average | 2.3% - 30.9% |
| **-0.5 ≤ z < 0.5** | **Average** | **30.9% - 69.1%** |
| 0.5 ≤ z < 2.0 | Above Average | 69.1% - 97.7% |
| z ≥ 2.0 | Very High | > 97.7% |
**Context matters:**
- For **steps, sleep duration, and active minutes**: Higher values are generally better ✓
- For **heart rate**: Lower resting values are generally better ✓
*A z-score of 0 means you are exactly at the population average for your demographic group.*
""")
# Footer
st.markdown("---")
st.markdown(
"*PDF reports are for educational and research purposes. "
"For detailed questions regarding personal health data, contact your healthcare professionals.*"
)
st.markdown(
"Built with ❤️ in Düsseldorf. © Lars Masanneck 2026."
)
|