""" Batch processing and PDF generation utilities for Smartwatch Normative Z-Score Calculator. Author: Lars Masanneck 2026 """ import pandas as pd import numpy as np from io import BytesIO from reportlab.lib import colors from reportlab.lib.pagesizes import A4 from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle from reportlab.lib.units import inch from reportlab.graphics.shapes import Drawing, Rect, Line, String # Import from the main normalizer model import normalizer_model # Friendly biomarker labels (matching the main app) BIOMARKER_LABELS = { "nb_steps": "Number of Steps", "max_steps": "Maximum Steps", "mean_active_time": "Mean Active Time", "sbp": "Systolic Blood Pressure", "dbp": "Diastolic Blood Pressure", "sleep_duration": "Sleep Duration", "avg_night_hr": "Average Night Heart Rate", "nb_moderate_active_minutes": "Moderate Active Minutes", "nb_vigorous_active_minutes": "Vigorous Active Minutes", "weight": "Weight", "pwv": "Pulse Wave Velocity", } # Biomarkers where HIGHER values are BETTER (more is good) # These get green for high z-scores, concerning colors for low HIGHER_IS_BETTER = { "nb_steps", "max_steps", "mean_active_time", "sleep_duration", "nb_moderate_active_minutes", "nb_vigorous_active_minutes", } # Biomarkers where LOWER values are BETTER (less is good) # These get green for low z-scores, concerning colors for high LOWER_IS_BETTER = { "sbp", "dbp", "pwv", "avg_night_hr", "weight", } # Biomarkers available for batch processing (excluding disabled ones) AVAILABLE_BIOMARKERS = [ "nb_steps", "max_steps", "mean_active_time", "sleep_duration", "avg_night_hr", "nb_moderate_active_minutes", ] def get_batch_template_df(): """Return a template DataFrame for batch upload.""" return pd.DataFrame({ "patient_id": ["P001", "P002", "P003"], "age": [45, 62, 38], "gender": ["Man", "Woman", "Man"], "region": ["Western Europe", "Western Europe", "North America"], "bmi": [24.5, 28.1, 22.3], "nb_steps": [7500, 4200, 9800], "sleep_duration": [7.2, 6.5, 8.1], "avg_night_hr": [62, 68, 58], }) def process_batch_data(df: pd.DataFrame, normative_df: pd.DataFrame, biomarkers_to_process: list = None) -> pd.DataFrame: """ Process batch data and add z-score and percentile columns for selected biomarkers. Parameters ---------- df : pd.DataFrame Input data with patient demographics and biomarker values normative_df : pd.DataFrame Normative reference table biomarkers_to_process : list, optional List of biomarker columns to process. If None, auto-detect from data. Returns ------- pd.DataFrame Results with z-scores and percentiles added """ results = [] # Auto-detect biomarkers if not specified if biomarkers_to_process is None: biomarkers_to_process = [col for col in df.columns if col in AVAILABLE_BIOMARKERS] for _, row in df.iterrows(): result = row.to_dict() # Process each biomarker for biomarker in biomarkers_to_process: if pd.notna(row.get(biomarker)): try: res = normalizer_model.compute_normative_position( value=float(row[biomarker]), biomarker=biomarker, age_group=int(row['age']) if pd.notna(row.get('age')) else 45, region=row.get('region', 'Western Europe'), gender=row.get('gender', 'Man'), bmi=float(row.get('bmi', 24.0)) if pd.notna(row.get('bmi')) else 24.0, normative_df=normative_df, ) result[f'{biomarker}_z'] = round(res['z_score'], 2) result[f'{biomarker}_percentile'] = round(res['percentile'], 1) # Context-aware interpretation (Average = -0.5 to 0.5) z = res['z_score'] higher_is_better = biomarker in HIGHER_IS_BETTER if higher_is_better: # For steps, sleep, activity: high is good if z < -2: result[f'{biomarker}_interpretation'] = 'Very Low ⚠️' elif z < -0.5: result[f'{biomarker}_interpretation'] = 'Below Average' elif z < 0.5: result[f'{biomarker}_interpretation'] = 'Average' elif z < 2: result[f'{biomarker}_interpretation'] = 'Above Average ✓' else: result[f'{biomarker}_interpretation'] = 'Excellent ✓✓' else: # For HR, BP, PWV: low is good if z < -2: result[f'{biomarker}_interpretation'] = 'Very Low ✓✓' elif z < -0.5: result[f'{biomarker}_interpretation'] = 'Below Average ✓' elif z < 0.5: result[f'{biomarker}_interpretation'] = 'Average' elif z < 2: result[f'{biomarker}_interpretation'] = 'Above Average' else: result[f'{biomarker}_interpretation'] = 'Elevated ⚠️' except Exception as e: result[f'{biomarker}_z'] = 'N/A' result[f'{biomarker}_percentile'] = 'N/A' result[f'{biomarker}_interpretation'] = f'Error: {str(e)[:30]}' else: result[f'{biomarker}_z'] = 'N/A' result[f'{biomarker}_percentile'] = 'N/A' result[f'{biomarker}_interpretation'] = 'No data' results.append(result) return pd.DataFrame(results) def create_z_score_gauge(z_score: float, label: str, biomarker: str = None, width: float = 350, height: float = 100) -> Drawing: """Create a horizontal gauge showing z-score position with context-aware coloring.""" d = Drawing(width, height) gauge_y = 35 gauge_height = 25 gauge_left = 50 gauge_width = width - 100 # Determine if higher is better for this biomarker higher_is_better = biomarker in HIGHER_IS_BETTER if biomarker else False if higher_is_better: # For steps, sleep, activity: LOW is bad (red), HIGH is good (green) zone_colors = [ (colors.HexColor('#c0392b'), -3), # Red - very low (bad) (colors.HexColor('#e74c3c'), -2), # Lighter red (colors.HexColor('#f39c12'), -1), # Orange - below average (colors.HexColor('#f1c40f'), 0), # Yellow - average (colors.HexColor('#2ecc71'), 1), # Light green - above average (colors.HexColor('#27ae60'), 2), # Green - high (good) ] else: # For BP, HR, PWV: HIGH is bad (red), LOW is good (green) zone_colors = [ (colors.HexColor('#27ae60'), -3), # Green - very low (good) (colors.HexColor('#2ecc71'), -2), # Light green (colors.HexColor('#f1c40f'), -1), # Yellow - average (colors.HexColor('#f39c12'), 0), # Orange (colors.HexColor('#e74c3c'), 1), # Lighter red - elevated (colors.HexColor('#c0392b'), 2), # Red - high (bad) ] zone_width = gauge_width / 6 for i, (color, _) in enumerate(zone_colors): d.add(Rect(gauge_left + i * zone_width, gauge_y, zone_width, gauge_height, fillColor=color, strokeColor=None)) # Border d.add(Rect(gauge_left, gauge_y, gauge_width, gauge_height, fillColor=None, strokeColor=colors.black, strokeWidth=1)) # Marker position (clamp z to -3, 3) clamped_z = max(-3, min(3, z_score)) marker_x = gauge_left + ((clamped_z + 3) / 6) * gauge_width # Marker line d.add(Line(marker_x, gauge_y - 8, marker_x, gauge_y + gauge_height + 8, strokeColor=colors.black, strokeWidth=3)) # Scale labels for i, val in enumerate([-3, -2, -1, 0, 1, 2, 3]): x = gauge_left + (i / 6) * gauge_width d.add(String(x, gauge_y - 15, str(val), fontSize=9, textAnchor='middle')) # Title d.add(String(width / 2, height - 8, label, fontSize=11, textAnchor='middle', fontName='Helvetica-Bold')) # Z-score value d.add(String(width / 2, gauge_y + gauge_height + 18, f"Z = {z_score:.2f}", fontSize=10, textAnchor='middle', fontName='Helvetica-Bold')) return d def generate_pdf_report(patient_info: dict, measurements: dict, z_scores: dict = None) -> BytesIO: """ Generate a PDF report for a patient with Z-scores and graphs. Parameters ---------- patient_info : dict Patient demographics (age, gender, region, bmi) measurements : dict Biomarker measurements (biomarker_code: value) z_scores : dict Z-score results for each biomarker Returns ------- BytesIO PDF buffer ready for download """ buffer = BytesIO() doc = SimpleDocTemplate(buffer, pagesize=A4, topMargin=0.5*inch, bottomMargin=0.5*inch) styles = getSampleStyleSheet() # Orange-themed styles title_style = ParagraphStyle( 'Title', parent=styles['Heading1'], fontSize=18, spaceAfter=12, alignment=1, textColor=colors.HexColor('#d35400') ) heading_style = ParagraphStyle( 'Heading', parent=styles['Heading2'], fontSize=14, spaceAfter=8, spaceBefore=12, textColor=colors.HexColor('#e67e22') ) normal_style = styles['Normal'] elements = [] # Title elements.append(Paragraph("Smartwatch Normative Z-Score Report", title_style)) elements.append(Spacer(1, 0.2*inch)) # Patient Information elements.append(Paragraph("Demographics", heading_style)) patient_data = [ ["Age:", f"{patient_info.get('age', 'N/A')} years"], ["Gender:", patient_info.get('gender', 'N/A')], ["Region:", patient_info.get('region', 'N/A')], ["BMI:", f"{patient_info.get('bmi', 'N/A')}"], ] patient_table = Table(patient_data, colWidths=[2*inch, 4*inch]) patient_table.setStyle(TableStyle([ ('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'), ('ALIGN', (0, 0), (-1, -1), 'LEFT'), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('BOTTOMPADDING', (0, 0), (-1, -1), 6), ])) elements.append(patient_table) elements.append(Spacer(1, 0.2*inch)) # Measurements if measurements: elements.append(Paragraph("Measurements", heading_style)) measurements_data = [] for biomarker, value in measurements.items(): label = BIOMARKER_LABELS.get(biomarker, biomarker.replace('_', ' ').title()) measurements_data.append([f"{label}:", f"{value}"]) if measurements_data: meas_table = Table(measurements_data, colWidths=[2.5*inch, 3.5*inch]) meas_table.setStyle(TableStyle([ ('FONTNAME', (0, 0), (0, -1), 'Helvetica-Bold'), ('ALIGN', (0, 0), (-1, -1), 'LEFT'), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('BOTTOMPADDING', (0, 0), (-1, -1), 6), ])) elements.append(meas_table) elements.append(Spacer(1, 0.2*inch)) # Z-Score Analysis if z_scores: elements.append(Paragraph("Z-Score Analysis", heading_style)) elements.append(Paragraph( "Z-scores indicate how many standard deviations a measurement is from the population mean. " "Values between -2 and +2 are typically considered within normal range.", ParagraphStyle('ZInfo', parent=normal_style, fontSize=9, textColor=colors.grey, spaceAfter=8) )) # Z-score table z_data = [["Biomarker", "Value", "Z-Score", "Percentile", "Interpretation"]] for biomarker, data in z_scores.items(): if isinstance(data, dict) and 'z_score' in data: z = data['z_score'] pct = data['percentile'] value = measurements.get(biomarker, 'N/A') label = BIOMARKER_LABELS.get(biomarker, biomarker.replace('_', ' ').title()) # Context-aware interpretation (Average = -0.5 to 0.5) higher_is_better = biomarker in HIGHER_IS_BETTER if higher_is_better: # For steps, sleep, activity: high is good if z < -2: interp = "Very Low ⚠️" elif z < -0.5: interp = "Below Average" elif z < 0.5: interp = "Average" elif z < 2: interp = "Above Average ✓" else: interp = "Excellent ✓✓" else: # For HR, BP, PWV: low is good if z < -2: interp = "Very Low ✓✓" elif z < -0.5: interp = "Below Average ✓" elif z < 0.5: interp = "Average" elif z < 2: interp = "Above Average" else: interp = "Elevated ⚠️" z_data.append([label, str(value), f"{z:.2f}", f"{pct:.1f}%", interp]) if len(z_data) > 1: z_table = Table(z_data, colWidths=[1.5*inch, 1*inch, 0.8*inch, 1*inch, 1.2*inch]) z_table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#e67e22')), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('FONTSIZE', (0, 0), (-1, -1), 9), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('GRID', (0, 0), (-1, -1), 0.5, colors.grey), ('BOTTOMPADDING', (0, 0), (-1, -1), 6), ('TOPPADDING', (0, 0), (-1, -1), 6), ])) elements.append(z_table) elements.append(Spacer(1, 0.15*inch)) # Add Z-score gauges with context-aware coloring for biomarker, data in z_scores.items(): if isinstance(data, dict) and 'z_score' in data: label = BIOMARKER_LABELS.get(biomarker, biomarker.replace('_', ' ').title()) gauge = create_z_score_gauge(data['z_score'], label, biomarker=biomarker) elements.append(gauge) elements.append(Spacer(1, 0.1*inch)) elements.append(Spacer(1, 0.2*inch)) # Cohort Information elements.append(Paragraph("Reference Population", heading_style)) cohort_text = ( f"Z-scores calculated using normative data from Withings users in " f"{patient_info.get('region', 'Western Europe')}, filtered by gender " f"({patient_info.get('gender', 'N/A')}), age group, and BMI category." ) elements.append(Paragraph(cohort_text, normal_style)) elements.append(Spacer(1, 0.2*inch)) # Z-Score Classification Guide elements.append(Paragraph("Z-Score Classification Guide", heading_style)) classification_data = [ ["Z-Score Range", "Classification", "Percentile"], ["z < -2.0", "Very Low", "< 2.3%"], ["-2.0 ≤ z < -0.5", "Below Average", "2.3% - 30.9%"], ["-0.5 ≤ z < 0.5", "Average", "30.9% - 69.1%"], ["0.5 ≤ z < 2.0", "Above Average", "69.1% - 97.7%"], ["z ≥ 2.0", "Very High", "> 97.7%"], ] class_table = Table(classification_data, colWidths=[1.8*inch, 1.5*inch, 1.5*inch]) class_table.setStyle(TableStyle([ ('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#e67e22')), ('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke), ('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'), ('FONTSIZE', (0, 0), (-1, -1), 9), ('ALIGN', (0, 0), (-1, -1), 'CENTER'), ('VALIGN', (0, 0), (-1, -1), 'MIDDLE'), ('GRID', (0, 0), (-1, -1), 0.5, colors.grey), ('BOTTOMPADDING', (0, 0), (-1, -1), 6), ('TOPPADDING', (0, 0), (-1, -1), 6), # Highlight the "Average" row ('BACKGROUND', (0, 3), (-1, 3), colors.HexColor('#fef9e7')), ])) elements.append(class_table) elements.append(Spacer(1, 0.1*inch)) context_note = Paragraph( "Context: For steps, sleep, and activity - higher is better. " "For heart rate - lower resting values are better. " "A z-score of 0 = population average for your demographic group.", ParagraphStyle('ContextNote', parent=normal_style, fontSize=8, textColor=colors.HexColor('#555555')) ) elements.append(context_note) elements.append(Spacer(1, 0.2*inch)) # Disclaimer disclaimer = Paragraph( "This report is for educational and research purposes only. Z-scores are based on " "Withings population data and may not reflect clinical reference ranges. For detailed " "questions regarding personal health data, contact your healthcare professionals.", ParagraphStyle('Disclaimer', parent=normal_style, fontSize=8, textColor=colors.grey) ) elements.append(disclaimer) # Footer elements.append(Spacer(1, 0.2*inch)) footer = Paragraph( "Built with ❤️ in Düsseldorf. © Lars Masanneck 2026.", ParagraphStyle('Footer', parent=normal_style, fontSize=8, textColor=colors.grey, alignment=1) ) elements.append(footer) doc.build(elements) buffer.seek(0) return buffer