Master0fNone commited on
Commit
f1f86da
·
verified ·
1 Parent(s): 1a780b0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +14 -51
app.py CHANGED
@@ -1,58 +1,21 @@
 
1
  import gradio as gr
2
- from transformers import AutoModel, AutoProcessor
3
- import torch
4
- import requests
5
- from PIL import Image
6
- from io import BytesIO
7
 
8
- fashion_items = ['top', 'trousers', 'jumper']
 
9
 
10
- # Load model and processor
11
- model_name = 'Marqo/marqo-fashionSigLIP'
12
- model = AutoModel.from_pretrained(model_name, trust_remote_code=True)
13
- processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
14
 
15
- # Preprocess and normalize text data
16
- with torch.no_grad():
17
- # Ensure truncation and padding are activated
18
- processed_texts = processor(
19
- text=fashion_items,
20
- return_tensors="pt",
21
- truncation=True, # Ensure text is truncated to fit model input size
22
- padding=True # Pad shorter sequences so that all are the same length
23
- )['input_ids']
24
-
25
- text_features = model.get_text_features(processed_texts)
26
- text_features = text_features / text_features.norm(dim=-1, keepdim=True)
27
-
28
- # Prediction function
29
- def predict_from_url(url):
30
- # Check if the URL is empty
31
- if not url:
32
- return {"Error": "Please input a URL"}
33
-
34
- try:
35
- image = Image.open(BytesIO(requests.get(url).content))
36
- except Exception as e:
37
- return {"Error": f"Failed to load image: {str(e)}"}
38
-
39
- processed_image = processor(images=image, return_tensors="pt")['pixel_values']
40
-
41
- with torch.no_grad():
42
- image_features = model.get_image_features(processed_image)
43
- image_features = image_features / image_features.norm(dim=-1, keepdim=True)
44
- text_probs = (100 * image_features @ text_features.T).softmax(dim=-1)
45
-
46
- return {fashion_items[i]: float(text_probs[0, i]) for i in range(len(fashion_items))}
47
-
48
- # Gradio interface
49
- demo = gr.Interface(
50
- fn=predict_from_url,
51
- inputs=gr.Textbox(label="Enter Image URL"),
52
- outputs=gr.Label(label="Classification Results"),
53
- title="Fashion Item Classifier",
54
- allow_flagging="never"
55
  )
56
 
57
  # Launch the interface
58
- demo.launch()
 
1
+ # Import libraries
2
  import gradio as gr
3
+ from transformers import pipeline
 
 
 
 
4
 
5
+ # Create a summarization pipeline
6
+ summarizer = pipeline("summarization")
7
 
8
+ # Define a function that takes a text and returns a summary
9
+ def summarize(text):
10
+ summary = summarizer(text, max_length=150, min_length=40, do_sample=False)[0]
11
+ return summary["summary_text"]
12
 
13
+ # Create a Gradio interface
14
+ interface = gr.Interface(
15
+ fn=summarize, # the function to wrap
16
+ inputs=gr.Textbox(lines=10, label="Input Text"), # the input component
17
+ outputs=gr.Textbox(label="Summary") # the output component
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
  )
19
 
20
  # Launch the interface
21
+ interface.launch()