# Imports import gradio as gr from transformers import AutoModel, AutoProcessor import torch import requests from PIL import Image from io import BytesIO from transformers import pipeline # Import a specific model model_name = "facebook/bart-large-cnn" # Create a summarization pipeline with Facebook Bart summarizer = pipeline("summarization", model=model_name) # Define a function that takes input and returns summary def summarize(input_text): summary = summarizer(input_text, max_length=100, min_length=10, do_sample=False) return summary[0]["summary_text"] # Create a Gradio interface interface = gr.Interface( fn=summarize, # the function to wrap inputs=gr.Textbox(lines=10, label="Input Text"), outputs=gr.Textbox(label="Summary") ) # Launch the interface interface.launch()