Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import torch
|
| 4 |
+
import soundfile as sf
|
| 5 |
+
|
| 6 |
+
# Load your pre-trained text-to-music model (example: using a music generation model)
|
| 7 |
+
model = pipeline("text-to-music", model="facebook/musicge-small")
|
| 8 |
+
|
| 9 |
+
# Function to process text and generate music
|
| 10 |
+
def generate_music(text_input):
|
| 11 |
+
# This part depends on the model you use
|
| 12 |
+
music_output = model(text_input) # Generate music based on input text
|
| 13 |
+
|
| 14 |
+
# Save the music to a file or return it directly
|
| 15 |
+
output_file = "/path/to/output.wav"
|
| 16 |
+
sf.write(output_file, music_output, 22050) # Example: Saving at 22050 Hz sample rate
|
| 17 |
+
return output_file
|
| 18 |
+
|
| 19 |
+
# Set up the Gradio interface
|
| 20 |
+
iface = gr.Interface(
|
| 21 |
+
fn=generate_music,
|
| 22 |
+
inputs=gr.Textbox(label="Enter Text for Music"),
|
| 23 |
+
outputs=gr.Audio(label="Generated Music")
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
# Launch the app
|
| 27 |
+
iface.launch()
|