File size: 8,790 Bytes
ae17242
 
6fc4461
 
 
 
 
 
 
ae17242
 
6fc4461
ae17242
6fc4461
9a4ddf6
ae17242
6fc4461
ae17242
 
 
 
 
 
 
 
a068d5b
 
 
ae17242
 
 
 
 
 
 
6fc4461
9341e06
6fc4461
 
 
 
 
ac9eabd
ae17242
 
6fc4461
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ae17242
 
6fc4461
a068d5b
ae17242
 
 
a068d5b
 
ae17242
 
 
 
 
 
 
 
6fc4461
a068d5b
ae17242
 
 
 
 
 
 
 
 
 
6fc4461
ae17242
 
 
 
 
 
 
6fc4461
ae17242
 
 
 
 
 
6fc4461
ae17242
1781bc9
 
 
 
ae17242
1781bc9
 
6fc4461
 
 
ae17242
6fc4461
 
 
 
 
 
ae17242
 
 
1781bc9
 
 
ae17242
6fc4461
ae17242
 
6fc4461
ae17242
6fc4461
 
 
a068d5b
 
6fc4461
a068d5b
1781bc9
a068d5b
 
ae17242
a068d5b
ae17242
 
1781bc9
ae17242
a068d5b
ae17242
 
1781bc9
ae17242
1781bc9
a068d5b
 
ae17242
a068d5b
ae17242
a068d5b
1781bc9
 
 
 
ae17242
 
 
a068d5b
ae17242
 
 
 
 
 
1781bc9
 
ae17242
 
 
 
 
 
 
 
 
 
 
 
 
 
a068d5b
 
 
ae17242
 
1781bc9
6fc4461
 
ae17242
 
a068d5b
ae17242
1781bc9
a068d5b
ae17242
a068d5b
ae17242
6fc4461
a068d5b
 
ae17242
6fc4461
ae17242
a068d5b
 
 
6fc4461
a068d5b
 
 
 
 
ae17242
 
 
a068d5b
ae17242
a068d5b
ae17242
 
 
 
a068d5b
ae17242
6fc4461
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
import pandas as pd
from sklearn.utils import shuffle
from tqdm.asyncio import tqdm_asyncio
from googletrans import Translator
from pathlib import Path
import asyncio
import random
import os

from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from transformers import TrainingArguments, Trainer, AutoTokenizer, AutoModelForSequenceClassification
import torch

import gradio as gr

# --- โหลด dataset
data = pd.read_parquet("hf://datasets/boltuix/emotions-dataset/emotions_dataset.parquet")

groups = {
    "neutral": "neutral",
    "anger": "angry",
    "love": "joy",
    "happiness": "fun",
    "sadness": "sorrow",
    "surprise": "surprised",
    "fear": "fear",
    "disgust": "disgust"
}

data = data[data['Label'].isin(groups.keys())].copy()
data['Label'] = data['Label'].map(groups)

seeds = [1, 2, 3, 4]

# --- Translate function (batch + executor + async + progress)
async def translate_all(seed, texts, language):
    # mapping language → Google Translate target code
    target_lang = "ja" if language == "Japanese" else "th"

    # จำกัดการยิง request เพื่อป้องกัน timeout
    semaphore = asyncio.Semaphore(8)

    async def sem_translate_task(text, idx):
        async with semaphore:
            for attempt in range(5):   # retry 5 ครั้ง
                try:
                    async with Translator() as translator:
                        result = await translator.translate(
                            text,
                            src="en",
                            dest=target_lang
                        )
                        return result.text, idx

                except Exception:
                    # backoff (เพิ่มขึ้นเรื่อย ๆ)
                    await asyncio.sleep(1 + attempt * 0.5 + random.random() * 0.3)

            # ถ้าล้มเหลว 5 ครั้ง → คืนข้อความเดิมกันล่ม
            return text, idx

    # สร้าง tasks
    tasks = [asyncio.create_task(sem_translate_task(text, idx)) 
             for idx, text in enumerate(texts)]

    translated = [None] * len(texts)

    # tqdm async สำหรับ progress bar
    for coro in tqdm_asyncio.as_completed(tasks, total=len(tasks)):
        result, index = await coro
        translated[index] = result

    return translated

# --- Sample Dataset
async def sample_all(language, progress=gr.Progress(track_tqdm=True)):
    files = []
    for seed in seeds:
        try:
            filename = f"./data/{language}_SampledData_{seed}.csv"
            Path("./data").mkdir(parents=True, exist_ok=True)
            if not os.path.exists(filename):
                sampled = (
                    data.groupby('Label', group_keys=False)
                        .apply(lambda x: x.sample(n=1000, random_state=int(seed)))
                )
                sampled = shuffle(sampled).reset_index(drop=True)

                texts = sampled["Sentence"].tolist()

                translated = await translate_all(seed, texts, language)
                sampled["Sentence"] = translated

                sampled.to_csv(filename, index=False)
                files.append(filename)
            else:
                files.append(filename)
        except Exception as e:
            raise gr.Error(e)
    return files

# --- Dataset class
class Dataset(torch.utils.data.Dataset):
    def __init__(self, encodings, labels=None):
        self.encodings = encodings
        self.labels = labels

    def __getitem__(self, idx):
        item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
        if self.labels is not None:
            item["labels"] = torch.tensor(self.labels[idx])
        return item

    def __len__(self):
        return len(self.encodings["input_ids"])

# --- Prepare dataset for Trainer
def prepare_dataset(df, tokenizer):
    label_list = sorted(df["Label"].unique())
    label2id = {label: i for i, label in enumerate(label_list)}
    id2label = {i: label for label, i in label2id.items()}

    X = list(df["Sentence"])
    y = [label2id[label] for label in df["Label"]]

    X_train, X_val, y_train, y_val = train_test_split(
        X, y, test_size=0.2, stratify=y, random_state=42
    )

    X_train_tokenized = tokenizer(
        X_train, padding=True, truncation=True, max_length=512
    )
    X_val_tokenized = tokenizer(
        X_val, padding=True, truncation=True, max_length=512
    )

    train_dataset = Dataset(X_train_tokenized, y_train)
    val_dataset = Dataset(X_val_tokenized, y_val)

    return train_dataset, val_dataset, label2id, id2label


# --- Compute metrics
def compute_metrics(eval_pred):
    logits, labels = eval_pred
    preds = logits.argmax(axis=-1)
    accuracy = accuracy_score(labels, preds)
    precision, recall, f1, _ = precision_recall_fscore_support(
        labels, preds, average='weighted'
    )
    return {"accuracy": accuracy, "precision": precision, "recall": recall, "f1": f1}

# --- Train model per language and seed
def train_model(language):
    model_name = "Geotrend/distilbert-base-th-cased" if language == "Japanese" else "Geotrend/distilbert-base-th-cased"

    tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
    metric_str_all = []
    model_paths = []

    for seed in seeds:
        csv_path = f"./data/{language}_SampledData_{seed}.csv"
        if not os.path.exists(csv_path):
            return f"File {csv_path} not found! กรุณาเตรียม Dataset ก่อน.", None

        df = pd.read_csv(csv_path)
        train_dataset, val_dataset, label2id, id2label = prepare_dataset(df, tokenizer)

        output_dir = f"./output/{language}/seed{seed}"
        final_model_dir = os.path.join(output_dir, "final_model")
        Path(final_model_dir).mkdir(parents=True, exist_ok=True)

        if not os.path.exists(os.path.join(final_model_dir, "pytorch_model.bin")):
            model = AutoModelForSequenceClassification.from_pretrained(
                model_name,
                use_safetensors=True,
                num_labels=len(label2id),
                id2label=id2label,
                label2id=label2id,
            )

            training_args = TrainingArguments(
                output_dir=output_dir,
                seed=seed,
                per_device_train_batch_size=8,
                per_device_eval_batch_size=8,
                eval_strategy="epoch",
                save_strategy="epoch",
                num_train_epochs=5,
                fp16=False,
                logging_dir=f"./logs/{language}_seed{seed}",
                logging_steps=100,
                load_best_model_at_end=True
            )

            trainer = Trainer(
                model=model,
                args=training_args,
                train_dataset=train_dataset,
                eval_dataset=val_dataset,
                tokenizer=tokenizer,
                compute_metrics=compute_metrics
            )

            trainer.train()
            trainer.save_model(final_model_dir)
            tokenizer.save_pretrained(final_model_dir)
            model_paths.append(final_model_dir)

            metrics = trainer.evaluate()
            metric_str = f"Seed {seed} ({language}):\n" + "\n".join(
                [f"{k}: {v:.4f}" for k, v in metrics.items()]
            )
            metric_str_all.append(metric_str)
        else:
            model_paths.append(final_model_dir)

    final_avg_dir = f"./VRM-Emotions/{language}"
    Path(final_avg_dir).mkdir(parents=True, exist_ok=True)

    return "\n\n".join(metric_str_all), model_paths, final_avg_dir

# --- Async wrapper for training
async def train_model_async(language, progress=gr.Progress(track_tqdm=True)):
    return await asyncio.to_thread(train_model, language)

# --- Gradio UI
with gr.Blocks() as demo:
    # Tab 1: Options
    with gr.Tab("Options"):
        language_dropdown = gr.Dropdown(
            choices=["Japanese", "Thai"],
            label="Language",
            value="Japanese"
        )

    # Tab 2: Prepare Dataset
    with gr.Tab("Prepare Dataset"):
        dataset_files = gr.Files(label="CSV Files")
        sample_btn = gr.Button("Get Datasets")
        sample_btn.click(sample_all, inputs=language_dropdown, outputs=dataset_files)

    # Tab 3: Train Model
    with gr.Tab("Train Model"):
        train_results = gr.TextArea(label="Metrics", interactive=False)
        models_files = gr.Files(label="Trained Model")
        train_btn = gr.Button("Train All")
        train_btn.click(train_model_async, inputs=language_dropdown, outputs=[train_results, models_files])

demo.launch(debug=True)