Spaces:
Sleeping
Sleeping
File size: 8,790 Bytes
ae17242 6fc4461 ae17242 6fc4461 ae17242 6fc4461 9a4ddf6 ae17242 6fc4461 ae17242 a068d5b ae17242 6fc4461 9341e06 6fc4461 ac9eabd ae17242 6fc4461 ae17242 6fc4461 a068d5b ae17242 a068d5b ae17242 6fc4461 a068d5b ae17242 6fc4461 ae17242 6fc4461 ae17242 6fc4461 ae17242 1781bc9 ae17242 1781bc9 6fc4461 ae17242 6fc4461 ae17242 1781bc9 ae17242 6fc4461 ae17242 6fc4461 ae17242 6fc4461 a068d5b 6fc4461 a068d5b 1781bc9 a068d5b ae17242 a068d5b ae17242 1781bc9 ae17242 a068d5b ae17242 1781bc9 ae17242 1781bc9 a068d5b ae17242 a068d5b ae17242 a068d5b 1781bc9 ae17242 a068d5b ae17242 1781bc9 ae17242 a068d5b ae17242 1781bc9 6fc4461 ae17242 a068d5b ae17242 1781bc9 a068d5b ae17242 a068d5b ae17242 6fc4461 a068d5b ae17242 6fc4461 ae17242 a068d5b 6fc4461 a068d5b ae17242 a068d5b ae17242 a068d5b ae17242 a068d5b ae17242 6fc4461 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import pandas as pd
from sklearn.utils import shuffle
from tqdm.asyncio import tqdm_asyncio
from googletrans import Translator
from pathlib import Path
import asyncio
import random
import os
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, precision_recall_fscore_support
from transformers import TrainingArguments, Trainer, AutoTokenizer, AutoModelForSequenceClassification
import torch
import gradio as gr
# --- โหลด dataset
data = pd.read_parquet("hf://datasets/boltuix/emotions-dataset/emotions_dataset.parquet")
groups = {
"neutral": "neutral",
"anger": "angry",
"love": "joy",
"happiness": "fun",
"sadness": "sorrow",
"surprise": "surprised",
"fear": "fear",
"disgust": "disgust"
}
data = data[data['Label'].isin(groups.keys())].copy()
data['Label'] = data['Label'].map(groups)
seeds = [1, 2, 3, 4]
# --- Translate function (batch + executor + async + progress)
async def translate_all(seed, texts, language):
# mapping language → Google Translate target code
target_lang = "ja" if language == "Japanese" else "th"
# จำกัดการยิง request เพื่อป้องกัน timeout
semaphore = asyncio.Semaphore(8)
async def sem_translate_task(text, idx):
async with semaphore:
for attempt in range(5): # retry 5 ครั้ง
try:
async with Translator() as translator:
result = await translator.translate(
text,
src="en",
dest=target_lang
)
return result.text, idx
except Exception:
# backoff (เพิ่มขึ้นเรื่อย ๆ)
await asyncio.sleep(1 + attempt * 0.5 + random.random() * 0.3)
# ถ้าล้มเหลว 5 ครั้ง → คืนข้อความเดิมกันล่ม
return text, idx
# สร้าง tasks
tasks = [asyncio.create_task(sem_translate_task(text, idx))
for idx, text in enumerate(texts)]
translated = [None] * len(texts)
# tqdm async สำหรับ progress bar
for coro in tqdm_asyncio.as_completed(tasks, total=len(tasks)):
result, index = await coro
translated[index] = result
return translated
# --- Sample Dataset
async def sample_all(language, progress=gr.Progress(track_tqdm=True)):
files = []
for seed in seeds:
try:
filename = f"./data/{language}_SampledData_{seed}.csv"
Path("./data").mkdir(parents=True, exist_ok=True)
if not os.path.exists(filename):
sampled = (
data.groupby('Label', group_keys=False)
.apply(lambda x: x.sample(n=1000, random_state=int(seed)))
)
sampled = shuffle(sampled).reset_index(drop=True)
texts = sampled["Sentence"].tolist()
translated = await translate_all(seed, texts, language)
sampled["Sentence"] = translated
sampled.to_csv(filename, index=False)
files.append(filename)
else:
files.append(filename)
except Exception as e:
raise gr.Error(e)
return files
# --- Dataset class
class Dataset(torch.utils.data.Dataset):
def __init__(self, encodings, labels=None):
self.encodings = encodings
self.labels = labels
def __getitem__(self, idx):
item = {key: torch.tensor(val[idx]) for key, val in self.encodings.items()}
if self.labels is not None:
item["labels"] = torch.tensor(self.labels[idx])
return item
def __len__(self):
return len(self.encodings["input_ids"])
# --- Prepare dataset for Trainer
def prepare_dataset(df, tokenizer):
label_list = sorted(df["Label"].unique())
label2id = {label: i for i, label in enumerate(label_list)}
id2label = {i: label for label, i in label2id.items()}
X = list(df["Sentence"])
y = [label2id[label] for label in df["Label"]]
X_train, X_val, y_train, y_val = train_test_split(
X, y, test_size=0.2, stratify=y, random_state=42
)
X_train_tokenized = tokenizer(
X_train, padding=True, truncation=True, max_length=512
)
X_val_tokenized = tokenizer(
X_val, padding=True, truncation=True, max_length=512
)
train_dataset = Dataset(X_train_tokenized, y_train)
val_dataset = Dataset(X_val_tokenized, y_val)
return train_dataset, val_dataset, label2id, id2label
# --- Compute metrics
def compute_metrics(eval_pred):
logits, labels = eval_pred
preds = logits.argmax(axis=-1)
accuracy = accuracy_score(labels, preds)
precision, recall, f1, _ = precision_recall_fscore_support(
labels, preds, average='weighted'
)
return {"accuracy": accuracy, "precision": precision, "recall": recall, "f1": f1}
# --- Train model per language and seed
def train_model(language):
model_name = "Geotrend/distilbert-base-th-cased" if language == "Japanese" else "Geotrend/distilbert-base-th-cased"
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
metric_str_all = []
model_paths = []
for seed in seeds:
csv_path = f"./data/{language}_SampledData_{seed}.csv"
if not os.path.exists(csv_path):
return f"File {csv_path} not found! กรุณาเตรียม Dataset ก่อน.", None
df = pd.read_csv(csv_path)
train_dataset, val_dataset, label2id, id2label = prepare_dataset(df, tokenizer)
output_dir = f"./output/{language}/seed{seed}"
final_model_dir = os.path.join(output_dir, "final_model")
Path(final_model_dir).mkdir(parents=True, exist_ok=True)
if not os.path.exists(os.path.join(final_model_dir, "pytorch_model.bin")):
model = AutoModelForSequenceClassification.from_pretrained(
model_name,
use_safetensors=True,
num_labels=len(label2id),
id2label=id2label,
label2id=label2id,
)
training_args = TrainingArguments(
output_dir=output_dir,
seed=seed,
per_device_train_batch_size=8,
per_device_eval_batch_size=8,
eval_strategy="epoch",
save_strategy="epoch",
num_train_epochs=5,
fp16=False,
logging_dir=f"./logs/{language}_seed{seed}",
logging_steps=100,
load_best_model_at_end=True
)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
eval_dataset=val_dataset,
tokenizer=tokenizer,
compute_metrics=compute_metrics
)
trainer.train()
trainer.save_model(final_model_dir)
tokenizer.save_pretrained(final_model_dir)
model_paths.append(final_model_dir)
metrics = trainer.evaluate()
metric_str = f"Seed {seed} ({language}):\n" + "\n".join(
[f"{k}: {v:.4f}" for k, v in metrics.items()]
)
metric_str_all.append(metric_str)
else:
model_paths.append(final_model_dir)
final_avg_dir = f"./VRM-Emotions/{language}"
Path(final_avg_dir).mkdir(parents=True, exist_ok=True)
return "\n\n".join(metric_str_all), model_paths, final_avg_dir
# --- Async wrapper for training
async def train_model_async(language, progress=gr.Progress(track_tqdm=True)):
return await asyncio.to_thread(train_model, language)
# --- Gradio UI
with gr.Blocks() as demo:
# Tab 1: Options
with gr.Tab("Options"):
language_dropdown = gr.Dropdown(
choices=["Japanese", "Thai"],
label="Language",
value="Japanese"
)
# Tab 2: Prepare Dataset
with gr.Tab("Prepare Dataset"):
dataset_files = gr.Files(label="CSV Files")
sample_btn = gr.Button("Get Datasets")
sample_btn.click(sample_all, inputs=language_dropdown, outputs=dataset_files)
# Tab 3: Train Model
with gr.Tab("Train Model"):
train_results = gr.TextArea(label="Metrics", interactive=False)
models_files = gr.Files(label="Trained Model")
train_btn = gr.Button("Train All")
train_btn.click(train_model_async, inputs=language_dropdown, outputs=[train_results, models_files])
demo.launch(debug=True)
|