File size: 5,871 Bytes
6904fc7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
DOC_CONTENT = """
# πŸ–ΌοΈ Image Labeling Tool - User Guide

## πŸ“‹ Overview

This tool helps you create labeled image datasets quickly and efficiently using AI-powered automatic labeling. Perfect for machine learning projects, computer vision tasks, and dataset preparation.

---

## πŸš€ Getting Started

### Step 1: Upload Images
- Click **πŸ“ Upload images** button
- Select multiple image files from your computer
- Supported formats: JPG, PNG, GIF, and other common image formats
- Images will appear in a grid layout

### Step 2: Generate Labels
You have two options for labeling:

#### Option A: Individual Labeling
- Click **✨ Generate label** below any image
- AI will analyze the image and create a detailed description
- Edit the generated text if needed

#### Option B: Batch Labeling
- Click **🏷️ Labelize all images** button
- AI will process all images automatically
- Progress bar shows labeling status
- All images get labeled simultaneously

### Step 3: Review and Edit
- Labels appear as text boxes below each image
- Click on any text box to edit the description
- Make changes as needed for your specific use case

### Step 4: Download Dataset
- Configure download options in the **πŸ“¦ Download Options** section
- Choose folder organization preference:
  - βœ… **Organized**: Images in `images/` folder, labels in `labels/` folder
  - ❌ **Flat**: All files in root directory
- Click **πŸ’Ύ Download dataset** to get your labeled dataset

---

## 🎯 Features

### πŸ€– AI-Powered Labeling
- Uses advanced Florence-2 model for accurate image descriptions
- Generates detailed, contextual descriptions
- Supports multiple description styles

### πŸ“Š Dataset Management
- Add/remove images easily
- Edit labels manually
- Real-time progress tracking
- Efficient batch processing

### πŸ“¦ Flexible Export Options
- **Organized mode**: Perfect for ML frameworks expecting separate folders
- **Flat mode**: Ideal for simple file organization
- Automatic text file generation with matching names

### 🎨 User-Friendly Interface
- Clean, intuitive design
- Visual progress indicators
- Responsive layout
- Emoji-enhanced navigation

---

## πŸ’‘ Tips & Best Practices

### For Better Labels
- Use high-quality, clear images
- Ensure good lighting and focus
- Avoid blurry or low-resolution images
- Consider image diversity for training datasets

### For Efficient Workflow
- Start with a small batch to test label quality
- Use batch processing for large datasets
- Review and edit labels for consistency
- Download frequently to save progress

### For Dataset Quality
- Ensure consistent labeling style
- Add specific details relevant to your use case
- Remove irrelevant or poor-quality images
- Test your dataset with your target application

---

## πŸ”§ Technical Details

### Supported Image Formats
- JPEG (.jpg, .jpeg)
- PNG (.png)
- GIF (.gif)
- BMP (.bmp)
- TIFF (.tiff, .tif)
- WebP (.webp)

### Label Format
- Plain text files (.txt)
- UTF-8 encoding
- Same basename as corresponding image
- Example: `photo1.jpg` β†’ `photo1.txt`

### File Organization

#### Organized Mode
```
dataset.zip
β”œβ”€β”€ images/
β”‚   β”œβ”€β”€ photo1.jpg
β”‚   β”œβ”€β”€ photo2.png
β”‚   └── ...
└── labels/
    β”œβ”€β”€ photo1.txt
    β”œβ”€β”€ photo2.txt
    └── ...
```

#### Flat Mode
```
dataset.zip
β”œβ”€β”€ photo1.jpg
β”œβ”€β”€ photo1.txt
β”œβ”€β”€ photo2.png
β”œβ”€β”€ photo2.txt
└── ...
```

---

## 🎯 Use Cases

### Machine Learning
- **Image Classification**: Create labeled datasets for training classifiers
- **Object Detection**: Generate descriptions for object detection tasks
- **Image Retrieval**: Build searchable image databases
- **Data Augmentation**: Create consistent label sets for augmented data

### Content Management
- **Photo Archives**: Organize personal or professional image collections
- **E-commerce**: Generate product descriptions automatically
- **Social Media**: Create alt-text and captions for images
- **Digital Asset Management**: Tag and organize visual content

### Research & Education
- **Academic Projects**: Prepare datasets for computer vision research
- **Teaching Materials**: Create labeled examples for students
- **Accessibility**: Generate descriptions for visually impaired users
- **Documentation**: Auto-generate figure descriptions

---

## ⚠️ Important Notes

### Performance
- Processing time depends on image count and size
- Batch processing is more efficient than individual labeling
- Large datasets may take several minutes to process

### Privacy
- Images are processed locally on your machine
- No data is sent to external servers during processing
- Downloaded datasets contain only your images and labels

### Limitations
- Very large images (>10MB) may take longer to process
- Complex images with multiple objects may need manual refinement
- AI accuracy varies with image quality and complexity

---

## πŸ†˜ Troubleshooting

### Common Issues

**Images not uploading?**
- Check file format compatibility
- Ensure files aren't corrupted
- Try smaller batches first

**Labels seem inaccurate?**
- Improve image quality and lighting
- Edit labels manually after generation
- Use consistent image style for better results

**Download not working?**
- Ensure you have labeled images first
- Check available disk space
- Try both folder organization options

**Performance slow?**
- Close other applications
- Use smaller image batches
- Consider image size optimization

### Getting Help
- Check image formats and sizes
- Ensure stable internet connection for model loading
- Restart the application if issues persist

---

## πŸŽ‰ Ready to Start!

1. **Upload** your images using the πŸ“ button
2. **Generate** labels individually or in batch
3. **Review** and edit as needed
4. **Download** your labeled dataset

Happy labeling! πŸš€
"""