Spaces:
Running
on
Zero
Running
on
Zero
File size: 2,361 Bytes
0b97d29 83d24cf 0b97d29 d5f1e98 0b97d29 d5f1e98 0b97d29 d5f1e98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 |
---
title: Labelizer - AI Image Labeling Tool
emoji: πΌοΈ
colorFrom: blue
colorTo: purple
sdk: gradio
sdk_version: 6.0.2
app_file: app.py
pinned: false
license: mit
python_version: "3.12"
---
# πΌοΈ Labelizer - AI Image Labeling Tool
An intelligent image labeling tool that uses Florence-2 vision-language model to automatically generate detailed descriptions for your images. Perfect for creating labeled datasets for machine learning projects.
## β¨ Features
- π€ **AI-Powered Labeling**: Uses advanced Florence-2 model for accurate image descriptions
- π **Batch Processing**: Label multiple images at once with progress tracking
- βοΈ **Manual Editing**: Edit generated labels to fit your specific needs
- π¦ **Flexible Export**: Download datasets with organized folder structure or flat format
- π¨ **User-Friendly Interface**: Clean, intuitive Gradio interface with emoji-enhanced navigation
## π How to Use
1. **Upload Images**: Click "π Upload images" to select multiple image files
2. **Generate Labels**:
- Click "β¨ Generate label" below individual images
- Or click "π·οΈ Labelize all images" for batch processing
3. **Review & Edit**: Modify any generated labels as needed
4. **Download**: Create and download your labeled dataset as a ZIP file
## π οΈ Technical Details
- **Model**: Florence-2-large-hf for vision-language understanding
- **Framework**: Gradio with ZeroGPU support
- **Supported Formats**: JPG, PNG, GIF, BMP, TIFF, WebP
- **Export Options**: Organized folders (images/ + labels/) or flat structure
## π Supported Tasks
The tool supports various captioning tasks:
- `<MORE_DETAILED_CAPTION>`: Comprehensive image descriptions
- `<DETAILED_CAPTION>`: Detailed but concise descriptions
- `<CAPTION>`: Basic image captions
## π― Use Cases
- **Machine Learning**: Create labeled datasets for computer vision tasks
- **Content Management**: Organize image collections with descriptions
- **Accessibility**: Generate alt-text for images
- **Research**: Prepare datasets for academic projects
## β‘ Performance
- Optimized for GPU acceleration with ZeroGPU
- Efficient batch processing for large datasets
- Lazy loading to minimize resource usage
---
Built with β€οΈ using [Gradio](https://gradio.app/) and [Florence-2](https://huggingface.co/microsoft/Florence-2-large)
|