Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,871 Bytes
6904fc7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
DOC_CONTENT = """
# πΌοΈ Image Labeling Tool - User Guide
## π Overview
This tool helps you create labeled image datasets quickly and efficiently using AI-powered automatic labeling. Perfect for machine learning projects, computer vision tasks, and dataset preparation.
---
## π Getting Started
### Step 1: Upload Images
- Click **π Upload images** button
- Select multiple image files from your computer
- Supported formats: JPG, PNG, GIF, and other common image formats
- Images will appear in a grid layout
### Step 2: Generate Labels
You have two options for labeling:
#### Option A: Individual Labeling
- Click **β¨ Generate label** below any image
- AI will analyze the image and create a detailed description
- Edit the generated text if needed
#### Option B: Batch Labeling
- Click **π·οΈ Labelize all images** button
- AI will process all images automatically
- Progress bar shows labeling status
- All images get labeled simultaneously
### Step 3: Review and Edit
- Labels appear as text boxes below each image
- Click on any text box to edit the description
- Make changes as needed for your specific use case
### Step 4: Download Dataset
- Configure download options in the **π¦ Download Options** section
- Choose folder organization preference:
- β
**Organized**: Images in `images/` folder, labels in `labels/` folder
- β **Flat**: All files in root directory
- Click **πΎ Download dataset** to get your labeled dataset
---
## π― Features
### π€ AI-Powered Labeling
- Uses advanced Florence-2 model for accurate image descriptions
- Generates detailed, contextual descriptions
- Supports multiple description styles
### π Dataset Management
- Add/remove images easily
- Edit labels manually
- Real-time progress tracking
- Efficient batch processing
### π¦ Flexible Export Options
- **Organized mode**: Perfect for ML frameworks expecting separate folders
- **Flat mode**: Ideal for simple file organization
- Automatic text file generation with matching names
### π¨ User-Friendly Interface
- Clean, intuitive design
- Visual progress indicators
- Responsive layout
- Emoji-enhanced navigation
---
## π‘ Tips & Best Practices
### For Better Labels
- Use high-quality, clear images
- Ensure good lighting and focus
- Avoid blurry or low-resolution images
- Consider image diversity for training datasets
### For Efficient Workflow
- Start with a small batch to test label quality
- Use batch processing for large datasets
- Review and edit labels for consistency
- Download frequently to save progress
### For Dataset Quality
- Ensure consistent labeling style
- Add specific details relevant to your use case
- Remove irrelevant or poor-quality images
- Test your dataset with your target application
---
## π§ Technical Details
### Supported Image Formats
- JPEG (.jpg, .jpeg)
- PNG (.png)
- GIF (.gif)
- BMP (.bmp)
- TIFF (.tiff, .tif)
- WebP (.webp)
### Label Format
- Plain text files (.txt)
- UTF-8 encoding
- Same basename as corresponding image
- Example: `photo1.jpg` β `photo1.txt`
### File Organization
#### Organized Mode
```
dataset.zip
βββ images/
β βββ photo1.jpg
β βββ photo2.png
β βββ ...
βββ labels/
βββ photo1.txt
βββ photo2.txt
βββ ...
```
#### Flat Mode
```
dataset.zip
βββ photo1.jpg
βββ photo1.txt
βββ photo2.png
βββ photo2.txt
βββ ...
```
---
## π― Use Cases
### Machine Learning
- **Image Classification**: Create labeled datasets for training classifiers
- **Object Detection**: Generate descriptions for object detection tasks
- **Image Retrieval**: Build searchable image databases
- **Data Augmentation**: Create consistent label sets for augmented data
### Content Management
- **Photo Archives**: Organize personal or professional image collections
- **E-commerce**: Generate product descriptions automatically
- **Social Media**: Create alt-text and captions for images
- **Digital Asset Management**: Tag and organize visual content
### Research & Education
- **Academic Projects**: Prepare datasets for computer vision research
- **Teaching Materials**: Create labeled examples for students
- **Accessibility**: Generate descriptions for visually impaired users
- **Documentation**: Auto-generate figure descriptions
---
## β οΈ Important Notes
### Performance
- Processing time depends on image count and size
- Batch processing is more efficient than individual labeling
- Large datasets may take several minutes to process
### Privacy
- Images are processed locally on your machine
- No data is sent to external servers during processing
- Downloaded datasets contain only your images and labels
### Limitations
- Very large images (>10MB) may take longer to process
- Complex images with multiple objects may need manual refinement
- AI accuracy varies with image quality and complexity
---
## π Troubleshooting
### Common Issues
**Images not uploading?**
- Check file format compatibility
- Ensure files aren't corrupted
- Try smaller batches first
**Labels seem inaccurate?**
- Improve image quality and lighting
- Edit labels manually after generation
- Use consistent image style for better results
**Download not working?**
- Ensure you have labeled images first
- Check available disk space
- Try both folder organization options
**Performance slow?**
- Close other applications
- Use smaller image batches
- Consider image size optimization
### Getting Help
- Check image formats and sizes
- Ensure stable internet connection for model loading
- Restart the application if issues persist
---
## π Ready to Start!
1. **Upload** your images using the π button
2. **Generate** labels individually or in batch
3. **Review** and edit as needed
4. **Download** your labeled dataset
Happy labeling! π
"""
|