Spaces:
Running
on
Zero
Running
on
Zero
Back to my working implementation
Browse files- labelizer/__init__.py +21 -17
labelizer/__init__.py
CHANGED
|
@@ -1,28 +1,34 @@
|
|
| 1 |
import torch
|
| 2 |
from PIL import Image
|
| 3 |
-
from transformers import
|
| 4 |
|
| 5 |
MODEL_ID = "ducviet00/Florence-2-large-hf"
|
| 6 |
|
| 7 |
# Global variables for lazy loading
|
| 8 |
_model = None
|
| 9 |
_processor = None
|
|
|
|
|
|
|
| 10 |
|
| 11 |
|
| 12 |
def _load_model():
|
| 13 |
"""Load model and processor lazily"""
|
| 14 |
-
global _model, _processor
|
| 15 |
|
| 16 |
if _model is None:
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
print(f"Loading model {MODEL_ID} on {
|
| 21 |
-
_model =
|
| 22 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
print("Model loaded successfully!")
|
| 24 |
|
| 25 |
-
return _model, _processor
|
| 26 |
|
| 27 |
|
| 28 |
def get_task_response(task_prompt: str, image: Image.Image, text_input=None):
|
|
@@ -35,7 +41,7 @@ def get_task_response(task_prompt: str, image: Image.Image, text_input=None):
|
|
| 35 |
|
| 36 |
"""
|
| 37 |
# Lazy load model only when needed
|
| 38 |
-
model, processor = _load_model()
|
| 39 |
if text_input is None:
|
| 40 |
prompt = task_prompt
|
| 41 |
else:
|
|
@@ -47,13 +53,11 @@ def get_task_response(task_prompt: str, image: Image.Image, text_input=None):
|
|
| 47 |
|
| 48 |
if processor is None:
|
| 49 |
raise ValueError("processor is None")
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
device = next(model.parameters()).device
|
| 56 |
-
inputs = {k: v.to(device) for k, v in inputs.items()}
|
| 57 |
|
| 58 |
generated_ids = model.generate(
|
| 59 |
input_ids=inputs["input_ids"],
|
|
|
|
| 1 |
import torch
|
| 2 |
from PIL import Image
|
| 3 |
+
from transformers import Florence2ForConditionalGeneration, Florence2Processor
|
| 4 |
|
| 5 |
MODEL_ID = "ducviet00/Florence-2-large-hf"
|
| 6 |
|
| 7 |
# Global variables for lazy loading
|
| 8 |
_model = None
|
| 9 |
_processor = None
|
| 10 |
+
_device = None
|
| 11 |
+
_torch_dtype = None
|
| 12 |
|
| 13 |
|
| 14 |
def _load_model():
|
| 15 |
"""Load model and processor lazily"""
|
| 16 |
+
global _model, _processor, _device, _torch_dtype
|
| 17 |
|
| 18 |
if _model is None:
|
| 19 |
+
_device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
| 20 |
+
_torch_dtype = torch.float16 if torch.cuda.is_available() else torch.float32
|
| 21 |
+
|
| 22 |
+
print(f"Loading model {MODEL_ID} on {_device} with dtype {_torch_dtype}...")
|
| 23 |
+
_model = Florence2ForConditionalGeneration.from_pretrained(
|
| 24 |
+
MODEL_ID, torch_dtype=_torch_dtype, trust_remote_code=True
|
| 25 |
+
).to(_device) # type: ignore
|
| 26 |
+
_processor = Florence2Processor.from_pretrained(
|
| 27 |
+
MODEL_ID, trust_remote_code=True
|
| 28 |
+
)
|
| 29 |
print("Model loaded successfully!")
|
| 30 |
|
| 31 |
+
return _model, _processor, _device, _torch_dtype
|
| 32 |
|
| 33 |
|
| 34 |
def get_task_response(task_prompt: str, image: Image.Image, text_input=None):
|
|
|
|
| 41 |
|
| 42 |
"""
|
| 43 |
# Lazy load model only when needed
|
| 44 |
+
model, processor, device, torch_dtype = _load_model()
|
| 45 |
if text_input is None:
|
| 46 |
prompt = task_prompt
|
| 47 |
else:
|
|
|
|
| 53 |
|
| 54 |
if processor is None:
|
| 55 |
raise ValueError("processor is None")
|
| 56 |
+
inputs = processor(
|
| 57 |
+
text=prompt,
|
| 58 |
+
images=image,
|
| 59 |
+
return_tensors="pt", # type: ignore
|
| 60 |
+
).to(device, torch_dtype)
|
|
|
|
|
|
|
| 61 |
|
| 62 |
generated_ids = model.generate(
|
| 63 |
input_ids=inputs["input_ids"],
|