Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,104 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import yfinance as yf
|
| 3 |
+
import numpy as np
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import plotly.graph_objects as go
|
| 6 |
+
from datetime import datetime
|
| 7 |
+
|
| 8 |
+
def download_stock_data(ticker, start_date, end_date):
|
| 9 |
+
stock = yf.Ticker(ticker)
|
| 10 |
+
df = stock.history(start=start_date, end=end_date)
|
| 11 |
+
return df
|
| 12 |
+
|
| 13 |
+
def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
|
| 14 |
+
try:
|
| 15 |
+
stock = yf.Ticker(ticker)
|
| 16 |
+
data = stock.history(start=start_date, end=end_date)
|
| 17 |
+
|
| 18 |
+
if data.empty:
|
| 19 |
+
return "No data available for the specified date range."
|
| 20 |
+
|
| 21 |
+
x = (data.index - data.index[0]).days
|
| 22 |
+
y = np.log(data['Close'])
|
| 23 |
+
slope, intercept = np.polyfit(x, y, 1)
|
| 24 |
+
|
| 25 |
+
future_days = 365 * 10
|
| 26 |
+
all_days = np.arange(len(x) + future_days)
|
| 27 |
+
log_trend = np.exp(intercept + slope * all_days)
|
| 28 |
+
|
| 29 |
+
inner_upper_band = log_trend * 2
|
| 30 |
+
inner_lower_band = log_trend / 2
|
| 31 |
+
outer_upper_band = log_trend * 4
|
| 32 |
+
outer_lower_band = log_trend / 4
|
| 33 |
+
|
| 34 |
+
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
|
| 35 |
+
|
| 36 |
+
fig = go.Figure()
|
| 37 |
+
|
| 38 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
|
| 39 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
|
| 40 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
|
| 41 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
|
| 42 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
|
| 43 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))
|
| 44 |
+
|
| 45 |
+
fig.update_layout(
|
| 46 |
+
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
|
| 47 |
+
xaxis_title='Date',
|
| 48 |
+
yaxis_title='Price (Log Scale)',
|
| 49 |
+
yaxis_type="log",
|
| 50 |
+
height=800,
|
| 51 |
+
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
|
| 52 |
+
hovermode='x unified'
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
fig.update_xaxes(
|
| 56 |
+
rangeslider_visible=True,
|
| 57 |
+
rangeselector=dict(
|
| 58 |
+
buttons=list([
|
| 59 |
+
dict(count=1, label="1m", step="month", stepmode="backward"),
|
| 60 |
+
dict(count=6, label="6m", step="month", stepmode="backward"),
|
| 61 |
+
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
| 62 |
+
dict(count=1, label="1y", step="year", stepmode="backward"),
|
| 63 |
+
dict(step="all")
|
| 64 |
+
])
|
| 65 |
+
)
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
return fig
|
| 69 |
+
except Exception as e:
|
| 70 |
+
return f"An error occurred: {str(e)}"
|
| 71 |
+
|
| 72 |
+
# Get the current date
|
| 73 |
+
current_date = datetime.now().strftime("%Y-%m-%d")
|
| 74 |
+
|
| 75 |
+
# Custom CSS to make charts full-width and larger
|
| 76 |
+
custom_css = """
|
| 77 |
+
.container {max-width: 100% !important; padding: 0 !important;}
|
| 78 |
+
.plot-container {height: 800px !important; width: 100% !important;}
|
| 79 |
+
.react-plotly-container {height: 100% !important; width: 100% !important;}
|
| 80 |
+
"""
|
| 81 |
+
|
| 82 |
+
# Create Gradio interface
|
| 83 |
+
with gr.Blocks(css=custom_css, title="Alan's Logarithmic Charting Tool") as iface:
|
| 84 |
+
gr.Markdown("# Alan's Logarithmic Charting Tool")
|
| 85 |
+
gr.Markdown("Enter a stock ticker and date range to generate a logarithmic chart.")
|
| 86 |
+
|
| 87 |
+
with gr.Row():
|
| 88 |
+
ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
|
| 89 |
+
start_date = gr.Textbox(label="Start Date", value="2015-01-01")
|
| 90 |
+
end_date = gr.Textbox(label="End Date", value=current_date)
|
| 91 |
+
|
| 92 |
+
submit_button = gr.Button("Generate Chart")
|
| 93 |
+
|
| 94 |
+
with gr.Row():
|
| 95 |
+
log_plot = gr.Plot(label="Logarithmic Stock Chart")
|
| 96 |
+
|
| 97 |
+
submit_button.click(
|
| 98 |
+
plot_interactive_logarithmic_stock_chart,
|
| 99 |
+
inputs=[ticker, start_date, end_date],
|
| 100 |
+
outputs=[log_plot]
|
| 101 |
+
)
|
| 102 |
+
|
| 103 |
+
# Launch the app
|
| 104 |
+
iface.launch()
|