Update app.py
Browse files
app.py
CHANGED
|
@@ -4,13 +4,15 @@ import numpy as np
|
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.graph_objects as go
|
| 6 |
from datetime import datetime
|
|
|
|
|
|
|
| 7 |
|
| 8 |
def download_stock_data(ticker, start_date, end_date):
|
| 9 |
stock = yf.Ticker(ticker)
|
| 10 |
df = stock.history(start=start_date, end=end_date)
|
| 11 |
return df
|
| 12 |
|
| 13 |
-
def
|
| 14 |
try:
|
| 15 |
stock = yf.Ticker(ticker)
|
| 16 |
data = stock.history(start=start_date, end=end_date)
|
|
@@ -18,86 +20,212 @@ def plot_interactive_logarithmic_stock_chart(ticker, start_date, end_date):
|
|
| 18 |
if data.empty:
|
| 19 |
return "No data available for the specified date range."
|
| 20 |
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
future_days = 365 * 10
|
| 26 |
-
all_days = np.arange(len(x) + future_days)
|
| 27 |
-
log_trend = np.exp(intercept + slope * all_days)
|
| 28 |
-
|
| 29 |
-
inner_upper_band = log_trend * 2
|
| 30 |
-
inner_lower_band = log_trend / 2
|
| 31 |
-
outer_upper_band = log_trend * 4
|
| 32 |
-
outer_lower_band = log_trend / 4
|
| 33 |
-
|
| 34 |
-
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
|
| 35 |
-
|
| 36 |
-
fig = go.Figure()
|
| 37 |
-
|
| 38 |
-
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
|
| 39 |
-
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
|
| 40 |
-
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
|
| 41 |
-
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
|
| 42 |
-
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
|
| 43 |
-
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))
|
| 44 |
-
|
| 45 |
-
fig.update_layout(
|
| 46 |
-
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
|
| 47 |
-
xaxis_title='Date',
|
| 48 |
-
yaxis_title='Price (Log Scale)',
|
| 49 |
-
yaxis_type="log",
|
| 50 |
-
height=800,
|
| 51 |
-
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
|
| 52 |
-
hovermode='x unified'
|
| 53 |
-
)
|
| 54 |
-
|
| 55 |
-
fig.update_xaxes(
|
| 56 |
-
rangeslider_visible=True,
|
| 57 |
-
rangeselector=dict(
|
| 58 |
-
buttons=list([
|
| 59 |
-
dict(count=1, label="1m", step="month", stepmode="backward"),
|
| 60 |
-
dict(count=6, label="6m", step="month", stepmode="backward"),
|
| 61 |
-
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
| 62 |
-
dict(count=1, label="1y", step="year", stepmode="backward"),
|
| 63 |
-
dict(step="all")
|
| 64 |
-
])
|
| 65 |
-
)
|
| 66 |
-
)
|
| 67 |
|
| 68 |
return fig
|
| 69 |
except Exception as e:
|
| 70 |
return f"An error occurred: {str(e)}"
|
| 71 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
# Get the current date
|
| 73 |
current_date = datetime.now().strftime("%Y-%m-%d")
|
| 74 |
|
| 75 |
-
# Custom CSS to make charts full-width and larger
|
| 76 |
custom_css = """
|
| 77 |
.container {max-width: 100% !important; padding: 0 !important;}
|
| 78 |
.plot-container {height: 800px !important; width: 100% !important;}
|
| 79 |
.react-plotly-container {height: 100% !important; width: 100% !important;}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
"""
|
| 81 |
|
| 82 |
-
# Create Gradio interface
|
| 83 |
-
with gr.Blocks(css=custom_css, title="
|
| 84 |
-
gr.Markdown("#
|
| 85 |
-
gr.Markdown("Enter a stock ticker and date range to generate a
|
| 86 |
|
| 87 |
with gr.Row():
|
| 88 |
ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
|
| 89 |
start_date = gr.Textbox(label="Start Date", value="2015-01-01")
|
| 90 |
end_date = gr.Textbox(label="End Date", value=current_date)
|
| 91 |
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
with gr.Row():
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
inputs=[ticker, start_date, end_date],
|
| 100 |
-
outputs=[
|
| 101 |
)
|
| 102 |
|
| 103 |
# Launch the app
|
|
|
|
| 4 |
import pandas as pd
|
| 5 |
import plotly.graph_objects as go
|
| 6 |
from datetime import datetime
|
| 7 |
+
from io import BytesIO
|
| 8 |
+
import base64
|
| 9 |
|
| 10 |
def download_stock_data(ticker, start_date, end_date):
|
| 11 |
stock = yf.Ticker(ticker)
|
| 12 |
df = stock.history(start=start_date, end=end_date)
|
| 13 |
return df
|
| 14 |
|
| 15 |
+
def plot_interactive_chart(ticker, start_date, end_date, chart_type):
|
| 16 |
try:
|
| 17 |
stock = yf.Ticker(ticker)
|
| 18 |
data = stock.history(start=start_date, end=end_date)
|
|
|
|
| 20 |
if data.empty:
|
| 21 |
return "No data available for the specified date range."
|
| 22 |
|
| 23 |
+
if chart_type == "Logarithmic":
|
| 24 |
+
fig = create_logarithmic_chart(data, ticker)
|
| 25 |
+
else:
|
| 26 |
+
fig = create_candlestick_chart(data, ticker)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
return fig
|
| 29 |
except Exception as e:
|
| 30 |
return f"An error occurred: {str(e)}"
|
| 31 |
|
| 32 |
+
def create_logarithmic_chart(data, ticker):
|
| 33 |
+
x = (data.index - data.index[0]).days
|
| 34 |
+
y = np.log(data['Close'])
|
| 35 |
+
slope, intercept = np.polyfit(x, y, 1)
|
| 36 |
+
|
| 37 |
+
future_days = 365 * 10
|
| 38 |
+
all_days = np.arange(len(x) + future_days)
|
| 39 |
+
log_trend = np.exp(intercept + slope * all_days)
|
| 40 |
+
|
| 41 |
+
inner_upper_band = log_trend * 2
|
| 42 |
+
inner_lower_band = log_trend / 2
|
| 43 |
+
outer_upper_band = log_trend * 4
|
| 44 |
+
outer_lower_band = log_trend / 4
|
| 45 |
+
|
| 46 |
+
extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D')
|
| 47 |
+
|
| 48 |
+
fig = go.Figure()
|
| 49 |
+
|
| 50 |
+
fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue')))
|
| 51 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red')))
|
| 52 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green')))
|
| 53 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green')))
|
| 54 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange')))
|
| 55 |
+
fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange')))
|
| 56 |
+
|
| 57 |
+
fig.update_layout(
|
| 58 |
+
title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands',
|
| 59 |
+
xaxis_title='Date',
|
| 60 |
+
yaxis_title='Price (Log Scale)',
|
| 61 |
+
yaxis_type="log",
|
| 62 |
+
height=800,
|
| 63 |
+
legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'),
|
| 64 |
+
hovermode='x unified'
|
| 65 |
+
)
|
| 66 |
+
|
| 67 |
+
fig.update_xaxes(
|
| 68 |
+
rangeslider_visible=True,
|
| 69 |
+
rangeselector=dict(
|
| 70 |
+
buttons=list([
|
| 71 |
+
dict(count=1, label="1m", step="month", stepmode="backward"),
|
| 72 |
+
dict(count=6, label="6m", step="month", stepmode="backward"),
|
| 73 |
+
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
| 74 |
+
dict(count=1, label="1y", step="year", stepmode="backward"),
|
| 75 |
+
dict(step="all")
|
| 76 |
+
])
|
| 77 |
+
)
|
| 78 |
+
)
|
| 79 |
+
|
| 80 |
+
return fig
|
| 81 |
+
|
| 82 |
+
def create_candlestick_chart(data, ticker):
|
| 83 |
+
fig = go.Figure(data=[go.Candlestick(x=data.index,
|
| 84 |
+
open=data['Open'],
|
| 85 |
+
high=data['High'],
|
| 86 |
+
low=data['Low'],
|
| 87 |
+
close=data['Close'])])
|
| 88 |
+
|
| 89 |
+
fig.update_layout(
|
| 90 |
+
title=f'{ticker} Stock Price (Candlestick Chart)',
|
| 91 |
+
xaxis_title='Date',
|
| 92 |
+
yaxis_title='Price',
|
| 93 |
+
height=800,
|
| 94 |
+
hovermode='x unified'
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
fig.update_xaxes(
|
| 98 |
+
rangeslider_visible=True,
|
| 99 |
+
rangeselector=dict(
|
| 100 |
+
buttons=list([
|
| 101 |
+
dict(count=1, label="1m", step="month", stepmode="backward"),
|
| 102 |
+
dict(count=6, label="6m", step="month", stepmode="backward"),
|
| 103 |
+
dict(count=1, label="YTD", step="year", stepmode="todate"),
|
| 104 |
+
dict(count=1, label="1y", step="year", stepmode="backward"),
|
| 105 |
+
dict(step="all")
|
| 106 |
+
])
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
return fig
|
| 111 |
+
|
| 112 |
+
def export_data(ticker, start_date, end_date, format):
|
| 113 |
+
data = download_stock_data(ticker, start_date, end_date)
|
| 114 |
+
|
| 115 |
+
if format == 'CSV':
|
| 116 |
+
output = BytesIO()
|
| 117 |
+
data.to_csv(output, index=True)
|
| 118 |
+
b64 = base64.b64encode(output.getvalue()).decode()
|
| 119 |
+
return f'data:text/csv;base64,{b64}'
|
| 120 |
+
elif format == 'Excel':
|
| 121 |
+
output = BytesIO()
|
| 122 |
+
with pd.ExcelWriter(output, engine='xlsxwriter') as writer:
|
| 123 |
+
data.to_excel(writer, sheet_name='Stock Data', index=True)
|
| 124 |
+
b64 = base64.b64encode(output.getvalue()).decode()
|
| 125 |
+
return f'data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}'
|
| 126 |
+
elif format == 'PDF':
|
| 127 |
+
output = BytesIO()
|
| 128 |
+
fig = go.Figure(data=[go.Table(
|
| 129 |
+
header=dict(values=list(data.columns)),
|
| 130 |
+
cells=dict(values=[data[col] for col in data.columns])
|
| 131 |
+
)])
|
| 132 |
+
fig.write_image(output, format='pdf')
|
| 133 |
+
b64 = base64.b64encode(output.getvalue()).decode()
|
| 134 |
+
return f'data:application/pdf;base64,{b64}'
|
| 135 |
+
|
| 136 |
# Get the current date
|
| 137 |
current_date = datetime.now().strftime("%Y-%m-%d")
|
| 138 |
|
| 139 |
+
# Custom CSS to make charts full-width and larger, and apply additional styling
|
| 140 |
custom_css = """
|
| 141 |
.container {max-width: 100% !important; padding: 0 !important;}
|
| 142 |
.plot-container {height: 800px !important; width: 100% !important;}
|
| 143 |
.react-plotly-container {height: 100% !important; width: 100% !important;}
|
| 144 |
+
|
| 145 |
+
body {
|
| 146 |
+
background-color: #f0f0f0;
|
| 147 |
+
font-family: 'Helvetica', sans-serif;
|
| 148 |
+
}
|
| 149 |
+
.gradio-container {
|
| 150 |
+
margin: auto;
|
| 151 |
+
padding: 15px;
|
| 152 |
+
border-radius: 10px;
|
| 153 |
+
background-color: white;
|
| 154 |
+
box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1);
|
| 155 |
+
}
|
| 156 |
+
.gr-button {
|
| 157 |
+
background-color: #4CAF50;
|
| 158 |
+
border: none;
|
| 159 |
+
color: white;
|
| 160 |
+
text-align: center;
|
| 161 |
+
text-decoration: none;
|
| 162 |
+
display: inline-block;
|
| 163 |
+
font-size: 16px;
|
| 164 |
+
margin: 4px 2px;
|
| 165 |
+
cursor: pointer;
|
| 166 |
+
border-radius: 5px;
|
| 167 |
+
padding: 10px 24px;
|
| 168 |
+
}
|
| 169 |
+
.gr-button:hover {
|
| 170 |
+
background-color: #45a049;
|
| 171 |
+
}
|
| 172 |
+
.gr-form {
|
| 173 |
+
border: 1px solid #ddd;
|
| 174 |
+
border-radius: 5px;
|
| 175 |
+
padding: 15px;
|
| 176 |
+
margin-bottom: 20px;
|
| 177 |
+
}
|
| 178 |
+
.gr-input {
|
| 179 |
+
width: 100%;
|
| 180 |
+
padding: 12px 20px;
|
| 181 |
+
margin: 8px 0;
|
| 182 |
+
display: inline-block;
|
| 183 |
+
border: 1px solid #ccc;
|
| 184 |
+
border-radius: 4px;
|
| 185 |
+
box-sizing: border-box;
|
| 186 |
+
}
|
| 187 |
+
.gr-input:focus {
|
| 188 |
+
border-color: #4CAF50;
|
| 189 |
+
outline: none;
|
| 190 |
+
}
|
| 191 |
+
.gr-label {
|
| 192 |
+
font-weight: bold;
|
| 193 |
+
margin-bottom: 5px;
|
| 194 |
+
}
|
| 195 |
"""
|
| 196 |
|
| 197 |
+
# Create Gradio interface with updated theme
|
| 198 |
+
with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="Log Charting Tool") as iface:
|
| 199 |
+
gr.Markdown("# Log Charting Tool")
|
| 200 |
+
gr.Markdown("Enter a stock ticker and date range to generate a chart and export data.")
|
| 201 |
|
| 202 |
with gr.Row():
|
| 203 |
ticker = gr.Textbox(label="Stock Ticker", value="MSFT")
|
| 204 |
start_date = gr.Textbox(label="Start Date", value="2015-01-01")
|
| 205 |
end_date = gr.Textbox(label="End Date", value=current_date)
|
| 206 |
|
| 207 |
+
with gr.Row():
|
| 208 |
+
chart_type = gr.Radio(["Logarithmic", "Candlestick"], label="Chart Type", value="Logarithmic")
|
| 209 |
+
export_format = gr.Dropdown(["CSV", "Excel", "PDF"], label="Export Format", value="CSV")
|
| 210 |
+
|
| 211 |
+
with gr.Row():
|
| 212 |
+
generate_button = gr.Button("Generate Chart")
|
| 213 |
+
export_button = gr.Button("Export Data")
|
| 214 |
|
| 215 |
with gr.Row():
|
| 216 |
+
chart_output = gr.Plot(label="Stock Chart")
|
| 217 |
+
export_output = gr.File(label="Exported Data")
|
| 218 |
+
|
| 219 |
+
generate_button.click(
|
| 220 |
+
plot_interactive_chart,
|
| 221 |
+
inputs=[ticker, start_date, end_date, chart_type],
|
| 222 |
+
outputs=[chart_output]
|
| 223 |
+
)
|
| 224 |
|
| 225 |
+
export_button.click(
|
| 226 |
+
export_data,
|
| 227 |
+
inputs=[ticker, start_date, end_date, export_format],
|
| 228 |
+
outputs=[export_output]
|
| 229 |
)
|
| 230 |
|
| 231 |
# Launch the app
|