import gradio as gr import yfinance as yf import numpy as np import pandas as pd import plotly.graph_objects as go from datetime import datetime from io import BytesIO import base64 def download_stock_data(ticker, start_date, end_date): stock = yf.Ticker(ticker) df = stock.history(start=start_date, end=end_date) return df def plot_interactive_chart(ticker, start_date, end_date, chart_type): try: stock = yf.Ticker(ticker) data = stock.history(start=start_date, end=end_date) if data.empty: return "No data available for the specified date range." if chart_type == "Logarithmic": fig = create_logarithmic_chart(data, ticker) else: fig = create_candlestick_chart(data, ticker) return fig except Exception as e: return f"An error occurred: {str(e)}" def create_logarithmic_chart(data, ticker): x = (data.index - data.index[0]).days y = np.log(data['Close']) slope, intercept = np.polyfit(x, y, 1) future_days = 365 * 10 all_days = np.arange(len(x) + future_days) log_trend = np.exp(intercept + slope * all_days) inner_upper_band = log_trend * 2 inner_lower_band = log_trend / 2 outer_upper_band = log_trend * 4 outer_lower_band = log_trend / 4 extended_dates = pd.date_range(start=data.index[0], periods=len(all_days), freq='D') fig = go.Figure() fig.add_trace(go.Scatter(x=data.index, y=data['Close'], mode='lines', name='Close Price', line=dict(color='blue'))) fig.add_trace(go.Scatter(x=extended_dates, y=log_trend, mode='lines', name='Log Trend', line=dict(color='red'))) fig.add_trace(go.Scatter(x=extended_dates, y=inner_upper_band, mode='lines', name='Inner Upper Band', line=dict(color='green'))) fig.add_trace(go.Scatter(x=extended_dates, y=inner_lower_band, mode='lines', name='Inner Lower Band', line=dict(color='green'))) fig.add_trace(go.Scatter(x=extended_dates, y=outer_upper_band, mode='lines', name='Outer Upper Band', line=dict(color='orange'))) fig.add_trace(go.Scatter(x=extended_dates, y=outer_lower_band, mode='lines', name='Outer Lower Band', line=dict(color='orange'))) fig.update_layout( title=f'{ticker} Stock Price (Logarithmic Scale) with Extended Trend Lines and Outer Bands', xaxis_title='Date', yaxis_title='Price (Log Scale)', yaxis_type="log", height=800, legend=dict(x=0.01, y=0.99, bgcolor='rgba(255, 255, 255, 0.8)'), hovermode='x unified' ) fig.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ) ) return fig def create_candlestick_chart(data, ticker): fig = go.Figure(data=[go.Candlestick(x=data.index, open=data['Open'], high=data['High'], low=data['Low'], close=data['Close'])]) fig.update_layout( title=f'{ticker} Stock Price (Candlestick Chart)', xaxis_title='Date', yaxis_title='Price', height=800, hovermode='x unified' ) fig.update_xaxes( rangeslider_visible=True, rangeselector=dict( buttons=list([ dict(count=1, label="1m", step="month", stepmode="backward"), dict(count=6, label="6m", step="month", stepmode="backward"), dict(count=1, label="YTD", step="year", stepmode="todate"), dict(count=1, label="1y", step="year", stepmode="backward"), dict(step="all") ]) ) ) return fig def export_data(ticker, start_date, end_date, format): data = download_stock_data(ticker, start_date, end_date) if format == 'CSV': output = BytesIO() data.to_csv(output, index=True) b64 = base64.b64encode(output.getvalue()).decode() return f'data:text/csv;base64,{b64}' elif format == 'Excel': output = BytesIO() with pd.ExcelWriter(output, engine='xlsxwriter') as writer: data.to_excel(writer, sheet_name='Stock Data', index=True) b64 = base64.b64encode(output.getvalue()).decode() return f'data:application/vnd.openxmlformats-officedocument.spreadsheetml.sheet;base64,{b64}' elif format == 'PDF': output = BytesIO() fig = go.Figure(data=[go.Table( header=dict(values=list(data.columns)), cells=dict(values=[data[col] for col in data.columns]) )]) fig.write_image(output, format='pdf') b64 = base64.b64encode(output.getvalue()).decode() return f'data:application/pdf;base64,{b64}' # Get the current date current_date = datetime.now().strftime("%Y-%m-%d") # Custom CSS to make charts full-width and larger, and apply additional styling custom_css = """ .container {max-width: 100% !important; padding: 0 !important;} .plot-container {height: 800px !important; width: 100% !important;} .react-plotly-container {height: 100% !important; width: 100% !important;} body { background-color: #f0f0f0; font-family: 'Helvetica', sans-serif; } .gradio-container { margin: auto; padding: 15px; border-radius: 10px; background-color: white; box-shadow: 0 4px 6px rgba(0, 0, 0, 0.1); } .gr-button { background-color: #4CAF50; border: none; color: white; text-align: center; text-decoration: none; display: inline-block; font-size: 16px; margin: 4px 2px; cursor: pointer; border-radius: 5px; padding: 10px 24px; } .gr-button:hover { background-color: #45a049; } .gr-form { border: 1px solid #ddd; border-radius: 5px; padding: 15px; margin-bottom: 20px; } .gr-input { width: 100%; padding: 12px 20px; margin: 8px 0; display: inline-block; border: 1px solid #ccc; border-radius: 4px; box-sizing: border-box; } .gr-input:focus { border-color: #4CAF50; outline: none; } .gr-label { font-weight: bold; margin-bottom: 5px; } """ # Create Gradio interface with updated theme with gr.Blocks(css=custom_css, theme=gr.themes.Soft(), title="Log Charting Tool") as iface: gr.Markdown("# Log Charting Tool") gr.Markdown("Enter a stock ticker and date range to generate a chart and export data.") with gr.Row(): ticker = gr.Textbox(label="Stock Ticker", value="MSFT") start_date = gr.Textbox(label="Start Date", value="2015-01-01") end_date = gr.Textbox(label="End Date", value=current_date) with gr.Row(): chart_type = gr.Radio(["Logarithmic", "Candlestick"], label="Chart Type", value="Logarithmic") export_format = gr.Dropdown(["CSV", "Excel", "PDF"], label="Export Format", value="CSV") with gr.Row(): generate_button = gr.Button("Generate Chart") export_button = gr.Button("Export Data") with gr.Row(): chart_output = gr.Plot(label="Stock Chart") export_output = gr.File(label="Exported Data") generate_button.click( plot_interactive_chart, inputs=[ticker, start_date, end_date, chart_type], outputs=[chart_output] ) export_button.click( export_data, inputs=[ticker, start_date, end_date, export_format], outputs=[export_output] ) # Launch the app iface.launch()