Spaces:
Sleeping
Sleeping
Mhammad Ibrahim
commited on
Commit
·
f77bff8
1
Parent(s):
f4ce35e
update
Browse files
app.py
CHANGED
|
@@ -1,31 +1,33 @@
|
|
| 1 |
-
# import gradio as gr
|
| 2 |
-
|
| 3 |
-
# def greet(name):
|
| 4 |
-
# return "Hello " + name + "!!"
|
| 5 |
-
|
| 6 |
-
# demo = gr.Interface(fn=greet, inputs="text", outputs="text")
|
| 7 |
-
# demo.launch()
|
| 8 |
-
|
| 9 |
import gradio as gr
|
| 10 |
import torch
|
| 11 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 12 |
|
| 13 |
# Load model and tokenizer from Hugging Face Hub
|
| 14 |
tokenizer = AutoTokenizer.from_pretrained("Mhammad2023/bert-finetuned-ner-torch")
|
| 15 |
-
model = AutoModelForTokenClassification.from_pretrained(
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
)
|
| 18 |
-
classifier = pipeline("token-classification", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 19 |
|
| 20 |
def predict(text):
|
| 21 |
results = classifier(text)
|
| 22 |
if not results:
|
| 23 |
return "No entities found"
|
| 24 |
-
|
| 25 |
output = []
|
| 26 |
for entity in results:
|
| 27 |
-
output.append(f"{entity['word']}: {entity['
|
| 28 |
-
|
| 29 |
return "\n".join(output)
|
| 30 |
|
| 31 |
-
gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 4 |
|
| 5 |
# Load model and tokenizer from Hugging Face Hub
|
| 6 |
tokenizer = AutoTokenizer.from_pretrained("Mhammad2023/bert-finetuned-ner-torch")
|
| 7 |
+
model = AutoModelForTokenClassification.from_pretrained("Mhammad2023/bert-finetuned-ner-torch")
|
| 8 |
+
|
| 9 |
+
# Use aggregation_strategy="simple" to group B/I tokens
|
| 10 |
+
classifier = pipeline(
|
| 11 |
+
"token-classification",
|
| 12 |
+
model=model,
|
| 13 |
+
tokenizer=tokenizer,
|
| 14 |
+
aggregation_strategy="simple"
|
| 15 |
)
|
|
|
|
| 16 |
|
| 17 |
def predict(text):
|
| 18 |
results = classifier(text)
|
| 19 |
if not results:
|
| 20 |
return "No entities found"
|
| 21 |
+
|
| 22 |
output = []
|
| 23 |
for entity in results:
|
| 24 |
+
output.append(f"{entity['word']}: {entity['entity_group']} ({round(entity['score']*100, 2)}%)")
|
| 25 |
+
|
| 26 |
return "\n".join(output)
|
| 27 |
|
| 28 |
+
gr.Interface(
|
| 29 |
+
fn=predict,
|
| 30 |
+
inputs="text",
|
| 31 |
+
outputs="text",
|
| 32 |
+
title="Named Entity Recognition"
|
| 33 |
+
).launch()
|