Spaces:
Runtime error
Runtime error
| import torch | |
| import cv2 | |
| import gradio as gr | |
| import numpy as np | |
| import requests | |
| from PIL import Image | |
| from io import BytesIO | |
| from transformers import OwlViTProcessor, OwlViTForObjectDetection | |
| # Use GPU if available | |
| if torch.cuda.is_available(): | |
| device = torch.device("cuda") | |
| else: | |
| device = torch.device("cpu") | |
| model = OwlViTForObjectDetection.from_pretrained("google/owlvit-large-patch14").to(device) | |
| model.eval() | |
| processor = OwlViTProcessor.from_pretrained("google/owlvit-large-patch14") | |
| def query_image(img_url, text_queries, score_threshold): | |
| text_queries = text_queries.split(",") | |
| response = requests.get(img_url) | |
| img = Image.open(BytesIO(response.content)) | |
| img = np.array(img) | |
| target_sizes = torch.Tensor([img.shape[:2]]) | |
| inputs = processor(text=text_queries, images=img, return_tensors="pt").to(device) | |
| with torch.no_grad(): | |
| outputs = model(**inputs) | |
| outputs.logits = outputs.logits.cpu() | |
| outputs.pred_boxes = outputs.pred_boxes.cpu() | |
| results = processor.post_process(outputs=outputs, target_sizes=target_sizes) | |
| boxes, scores, labels = results[0]["boxes"], results[0]["scores"], results[0]["labels"] | |
| font = cv2.FONT_HERSHEY_SIMPLEX | |
| for box, score, label in zip(boxes, scores, labels): | |
| box = [int(i) for i in box.tolist()] | |
| if score >= score_threshold: | |
| img = cv2.rectangle(img, box[:2], box[2:], (255,0,0), 5) | |
| if box[3] + 25 > 768: | |
| y = box[3] - 10 | |
| else: | |
| y = box[3] + 25 | |
| img = cv2.putText( | |
| img, text_queries[label], (box[0], y), font, 1, (255,0,0), 2, cv2.LINE_AA | |
| ) | |
| return img | |
| description = """ | |
| DEMO | |
| """ | |
| demo = gr.Interface( | |
| query_image, | |
| inputs=["text", "text", gr.Slider(0, 1, value=0.1)], | |
| outputs="image", | |
| title="Zero-Shot Object Detection with OWL-ViT", | |
| description=description, | |
| examples=[], | |
| ) | |
| demo.launch() |