Spaces:
Runtime error
Runtime error
File size: 6,386 Bytes
5e466b4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 |
import os
import re
import torch
import numpy as np
import pandas as pd
import faiss
import base64
import tempfile
import speech_recognition as sr
from gtts import gTTS
from io import BytesIO
from PIL import Image
from sentence_transformers import SentenceTransformer
from transformers import (
AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig,
pipeline, AutoFeatureExtractor, AutoModelForAudioClassification,
AutoImageProcessor, AutoModelForImageClassification,
AutoModelForSequenceClassification
)
import gradio as gr
# Device setup
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Model loading (global, runs on app start)
PRIMARY_MODEL = "tiiuae/falcon-rw-1b"
quantization_config = BitsAndBytesConfig(
load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.float16
)
tokenizer = AutoTokenizer.from_pretrained(PRIMARY_MODEL)
model = AutoModelForCausalLM.from_pretrained(
PRIMARY_MODEL, device_map="auto", quantization_config=quantization_config
)
# Sentiment, emotion, ABSA, etc. (load all pipelines as in notebook)
sentiment_pipe = pipeline("sentiment-analysis", model="cardiffnlp/twitter-roberta-base-sentiment-latest", device=device.index if 'cuda' in str(device) else -1)
emotion_pipe = pipeline("text-classification", model="j-hartmann/emotion-english-distilroberta-base", return_all_scores=True, device=device.index if 'cuda' in str(device) else -1)
absa_pipe = pipeline("text-classification", model="yangheng/deberta-v3-base-absa-v1.1", device=device.index if 'cuda' in str(device) else -1)
# Embed model for safety/RAG
embed_model = SentenceTransformer("all-MiniLM-L6-v2", device=device)
# Safety model
safety_tokenizer = AutoTokenizer.from_pretrained("unitary/toxic-bert")
safety_model = AutoModelForSequenceClassification.from_pretrained("unitary/toxic-bert").to(device)
# Voice emotion
feature_extractor = AutoFeatureExtractor.from_pretrained("superb/hubert-base-superb-er")
ser_model = AutoModelForAudioClassification.from_pretrained("superb/hubert-base-superb-er").to(device)
# Facial emotion
face_processor = AutoImageProcessor.from_pretrained("dima806/facial_emotions_image_detection")
face_model = AutoModelForImageClassification.from_pretrained("dima806/facial_emotions_image_detection").to(device)
# RAG setup
RAG_XLSX_PATH = "https://raw.githubusercontent.com/Mitul060299/Hackathon/main/RAG_Knowledge_Base_WithID.xlsx"
rag_df = pd.read_excel(RAG_XLSX_PATH)
documents = rag_df["Knowledge Entry"].dropna().astype(str).tolist()
doc_ids = rag_df["ID"].dropna().astype(str).tolist() if "ID" in rag_df.columns else [str(i) for i in range(len(documents))]
doc_embeddings = embed_model.encode(documents, convert_to_numpy=True, normalize_embeddings=True)
dim = doc_embeddings.shape[1]
index = faiss.IndexFlatIP(dim)
index.add(doc_embeddings)
# Safety keywords/embeddings (as in notebook)
unsafe_keywords = ["suicide", "kill myself", "self harm", "hurt myself", "end my life", "overdose", "cutting", "hang myself", "can't go on", "want to die", "give up on life", "life is pointless", "i see no future", "end it all"]
unsafe_emb = embed_model.encode(unsafe_keywords, convert_to_tensor=True)
CRISIS_MESSAGE = "π Iβm concerned about your safety. I canβt assist with that here. Please contact local emergency services or a crisis helpline right now.\n\nIf in India: AASRA +91-9820466726\nUS: 988\nUK: Samaritans 116 123"
# Aspect keywords (from notebook)
_ASPECT_KEYWORDS = {
'girlfriend','boyfriend','partner','husband','wife','relationship','marriage','heartbreak','breakup','divorce',
'family','mother','father','parent','sibling','friend',
'job','career','work','boss','manager','colleague','layoff','termination','unemployment','job loss',
'study','school','college','university','exam','test','marks','grades','education',
'depression','depressed','anxiety','stressed','stress','fear','worry','lonely','isolation',
'sad','sadness','grief','loss','trauma','hopeless','confused',
'angry','anger','frustrated','irritated',
'health','illness','sick','tired','fatigue','disease','mental health','therapy','counseling',
'change','moving','transition'
}
# All functions from notebook (generate_from_model, detect_sentiment, detect_text_emotion, detect_absa, is_unsafe_message, soft_duplicate_filter, retrieve_docs, detect_voice_emotion, detect_facial_emotion, detect_intent, generate_contextual_response, build_prompt_enhanced, generate_response_pipeline_enhanced)
# ... (Copy-paste all function definitions from the notebook pages here. I've omitted them for brevity in this response, but include them fully in your app.py. They start from generate_from_model in Cell 4 and go through to generate_response_pipeline_enhanced in Cell 14.)
# Global history for duplicate filter
_previous_responses = []
# Gradio chatbot function
def chatbot_fn(message, history, audio, image):
prev_user_messages = [h[0] for h in history] # User messages from history
user_text = message
voice_path = audio
face_path = image
if audio:
recognizer = sr.Recognizer()
with sr.AudioFile(audio) as source:
audio_data = recognizer.record(source)
user_text = recognizer.recognize_google(audio_data) if not user_text else user_text
reply, te, tes, sent, aspects = generate_response_pipeline_enhanced(
user_text, prev_user_messages, voice_audio_path=voice_path, face_image_path=face_path
)
# TTS for voice output
tts = gTTS(reply)
audio_buffer = BytesIO()
tts.write_to_fp(audio_buffer)
audio_buffer.seek(0)
return reply, audio_buffer
# Gradio interface
with gr.Blocks() as demo:
gr.Markdown("# Mental Health Chatbot")
chatbot = gr.Chatbot()
msg = gr.Textbox(placeholder="Type your message or use mic/webcam...")
audio_in = gr.Audio(source="microphone", type="filepath", label="Speak (optional)")
image_in = gr.Image(source="webcam", type="filepath", label="Webcam (optional)")
audio_out = gr.Audio(label="Bot Response (Voice)", autoplay=True)
msg.submit(
chatbot_fn, [msg, chatbot, audio_in, image_in], [msg, audio_out]
).then(lambda: None, None, chatbot, queue=False) # Update chat history
demo.launch() |