Update app.py
Browse files
app.py
CHANGED
|
@@ -3,66 +3,102 @@ from snac import SNAC
|
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
-
|
| 7 |
from dotenv import load_dotenv
|
|
|
|
|
|
|
| 8 |
load_dotenv()
|
| 9 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 10 |
# Check if CUDA is available
|
| 11 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 12 |
|
| 13 |
print("Loading SNAC model...")
|
| 14 |
-
|
| 15 |
-
snac_model =
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
"
|
| 29 |
-
"
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16)
|
| 42 |
-
model.to(device)
|
| 43 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 44 |
-
print(f"Orpheus model loaded to {device}")
|
| 45 |
|
| 46 |
-
# Process text prompt
|
| 47 |
-
def process_prompt(prompt, voice,
|
|
|
|
|
|
|
| 48 |
prompt = f"{voice}: {prompt}"
|
| 49 |
-
input_ids =
|
| 50 |
-
|
| 51 |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
| 52 |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
| 53 |
-
|
| 54 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
| 55 |
-
|
| 56 |
-
# No padding needed for single input
|
| 57 |
attention_mask = torch.ones_like(modified_input_ids)
|
| 58 |
-
|
| 59 |
return modified_input_ids.to(device), attention_mask.to(device)
|
| 60 |
|
| 61 |
-
# Parse output tokens to audio
|
| 62 |
def parse_output(generated_ids):
|
| 63 |
token_to_find = 128257
|
| 64 |
token_to_remove = 128258
|
| 65 |
-
|
| 66 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 67 |
|
| 68 |
if len(token_indices[1]) > 0:
|
|
@@ -81,19 +117,23 @@ def parse_output(generated_ids):
|
|
| 81 |
row_length = row.size(0)
|
| 82 |
new_length = (row_length // 7) * 7
|
| 83 |
trimmed_row = row[:new_length]
|
| 84 |
-
trimmed_row = [t - 128266 for t in trimmed_row]
|
| 85 |
code_lists.append(trimmed_row)
|
| 86 |
-
|
| 87 |
-
return code_lists[0] # Return just the first one for single sample
|
| 88 |
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
layer_1 = []
|
| 94 |
layer_2 = []
|
| 95 |
layer_3 = []
|
| 96 |
-
|
|
|
|
| 97 |
layer_1.append(code_list[7*i])
|
| 98 |
layer_2.append(code_list[7*i+1]-4096)
|
| 99 |
layer_3.append(code_list[7*i+2]-(2*4096))
|
|
@@ -101,137 +141,190 @@ def redistribute_codes(code_list, snac_model):
|
|
| 101 |
layer_2.append(code_list[7*i+4]-(4*4096))
|
| 102 |
layer_3.append(code_list[7*i+5]-(5*4096))
|
| 103 |
layer_3.append(code_list[7*i+6]-(6*4096))
|
| 104 |
-
|
| 105 |
-
|
|
|
|
|
|
|
|
|
|
| 106 |
codes = [
|
| 107 |
-
torch.tensor(layer_1, device=
|
| 108 |
-
torch.tensor(layer_2, device=
|
| 109 |
-
torch.tensor(layer_3, device=
|
| 110 |
]
|
| 111 |
-
|
| 112 |
-
audio_hat = snac_model.decode(codes)
|
| 113 |
-
return audio_hat.detach().squeeze().cpu().numpy() # Always return CPU numpy array
|
| 114 |
|
| 115 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
@spaces.GPU()
|
| 117 |
-
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress()):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
if not text.strip():
|
|
|
|
| 119 |
return None
|
| 120 |
-
|
| 121 |
try:
|
| 122 |
progress(0.1, "Processing text...")
|
| 123 |
-
input_ids, attention_mask = process_prompt(text, voice,
|
| 124 |
-
|
| 125 |
progress(0.3, "Generating speech tokens...")
|
| 126 |
with torch.no_grad():
|
| 127 |
-
|
|
|
|
| 128 |
input_ids=input_ids,
|
| 129 |
attention_mask=attention_mask,
|
| 130 |
max_new_tokens=max_new_tokens,
|
| 131 |
do_sample=True,
|
| 132 |
-
temperature=temperature,
|
| 133 |
top_p=top_p,
|
| 134 |
repetition_penalty=repetition_penalty,
|
| 135 |
num_return_sequences=1,
|
| 136 |
-
eos_token_id=128258,
|
|
|
|
| 137 |
)
|
| 138 |
-
|
| 139 |
progress(0.6, "Processing speech tokens...")
|
| 140 |
code_list = parse_output(generated_ids)
|
| 141 |
-
|
| 142 |
progress(0.8, "Converting to audio...")
|
| 143 |
audio_samples = redistribute_codes(code_list, snac_model)
|
| 144 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 145 |
return (24000, audio_samples) # Return sample rate and audio
|
| 146 |
except Exception as e:
|
| 147 |
print(f"Error generating speech: {e}")
|
|
|
|
|
|
|
|
|
|
| 148 |
return None
|
| 149 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
# Examples for the UI
|
| 151 |
examples = [
|
| 152 |
-
|
| 153 |
-
["
|
| 154 |
-
["
|
|
|
|
| 155 |
]
|
| 156 |
|
| 157 |
-
# Available voices
|
| 158 |
-
|
|
|
|
| 159 |
|
| 160 |
# Create Gradio interface
|
| 161 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
| 162 |
gr.Markdown("""
|
| 163 |
-
# 🎵
|
| 164 |
-
Enter your text below and hear it converted to natural-sounding speech
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 171 |
with gr.Row():
|
| 172 |
with gr.Column(scale=3):
|
| 173 |
text_input = gr.Textbox(
|
| 174 |
-
label="Text to speak",
|
| 175 |
-
placeholder="
|
| 176 |
-
lines=5
|
|
|
|
| 177 |
)
|
| 178 |
voice = gr.Dropdown(
|
| 179 |
-
choices=VOICES,
|
| 180 |
-
value="tara",
|
| 181 |
-
label="Voice"
|
| 182 |
)
|
| 183 |
-
|
| 184 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 185 |
temperature = gr.Slider(
|
| 186 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
| 187 |
-
label="Temperature",
|
| 188 |
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
| 189 |
)
|
| 190 |
top_p = gr.Slider(
|
| 191 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
| 192 |
-
label="Top P",
|
| 193 |
info="Nucleus sampling threshold"
|
| 194 |
)
|
| 195 |
repetition_penalty = gr.Slider(
|
| 196 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
| 197 |
-
label="Repetition Penalty",
|
| 198 |
info="Higher values discourage repetitive patterns"
|
| 199 |
)
|
| 200 |
max_new_tokens = gr.Slider(
|
| 201 |
minimum=100, maximum=2000, value=1200, step=100,
|
| 202 |
-
label="Max Length",
|
| 203 |
info="Maximum length of generated audio (in tokens)"
|
| 204 |
)
|
| 205 |
-
|
| 206 |
with gr.Row():
|
| 207 |
-
submit_btn = gr.Button("Generate Speech", variant="primary")
|
| 208 |
-
clear_btn = gr.Button("Clear")
|
| 209 |
-
|
| 210 |
with gr.Column(scale=2):
|
| 211 |
-
audio_output = gr.Audio(label="Generated Speech", type="numpy")
|
| 212 |
-
|
| 213 |
# Set up examples
|
| 214 |
gr.Examples(
|
| 215 |
examples=examples,
|
| 216 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 217 |
outputs=audio_output,
|
| 218 |
-
fn=generate_speech,
|
| 219 |
-
cache_examples=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 220 |
)
|
| 221 |
-
|
| 222 |
-
#
|
| 223 |
submit_btn.click(
|
| 224 |
fn=generate_speech,
|
| 225 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 226 |
outputs=audio_output
|
| 227 |
)
|
| 228 |
-
|
|
|
|
| 229 |
clear_btn.click(
|
| 230 |
fn=lambda: (None, None),
|
| 231 |
inputs=[],
|
| 232 |
outputs=[text_input, audio_output]
|
| 233 |
)
|
|
|
|
| 234 |
|
| 235 |
# Launch the app
|
| 236 |
if __name__ == "__main__":
|
| 237 |
-
demo.queue().launch(share=False
|
|
|
|
| 3 |
import torch
|
| 4 |
import gradio as gr
|
| 5 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 6 |
+
# Removed snapshot_download as from_pretrained handles caching
|
| 7 |
from dotenv import load_dotenv
|
| 8 |
+
import gc # Import garbage collector for memory management
|
| 9 |
+
|
| 10 |
load_dotenv()
|
| 11 |
|
| 12 |
+
# --- Global Variables ---
|
| 13 |
+
current_model = None
|
| 14 |
+
current_tokenizer = None
|
| 15 |
+
current_model_name = None
|
| 16 |
+
model_choices = ["Mohaddz/orpheus-3b-0.1-ft-ar", "Mohaddz/orpheus-arabic-exp"]
|
| 17 |
+
default_model_name = "Mohaddz/orpheus-3b-0.1-ft-ar" # Or your preferred default
|
| 18 |
+
# --- End Global Variables ---
|
| 19 |
+
|
| 20 |
# Check if CUDA is available
|
| 21 |
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
dtype = torch.bfloat16 if device == "cuda" else torch.float32 # Use float32 on CPU
|
| 23 |
|
| 24 |
print("Loading SNAC model...")
|
| 25 |
+
try:
|
| 26 |
+
snac_model = SNAC.from_pretrained("hubertsiuzdak/snac_24khz")
|
| 27 |
+
snac_model = snac_model.to(device)
|
| 28 |
+
print("SNAC model loaded.")
|
| 29 |
+
except Exception as e:
|
| 30 |
+
print(f"Error loading SNAC model: {e}")
|
| 31 |
+
snac_model = None # Handle case where SNAC fails
|
| 32 |
+
|
| 33 |
+
# --- Model Loading Function ---
|
| 34 |
+
def load_model_and_tokenizer(model_name_to_load, progress=gr.Progress(track_tqdm=True)):
|
| 35 |
+
global current_model, current_tokenizer, current_model_name, device, dtype
|
| 36 |
+
|
| 37 |
+
if model_name_to_load == current_model_name and current_model is not None:
|
| 38 |
+
print(f"Model {model_name_to_load} is already loaded.")
|
| 39 |
+
gr.Info(f"Model {model_name_to_load} is already loaded.")
|
| 40 |
+
return f"Model {model_name_to_load} already loaded." # Return status message
|
| 41 |
+
|
| 42 |
+
print(f"Unloading previous model if exists...")
|
| 43 |
+
# Explicitly delete previous model and clear cache to free VRAM
|
| 44 |
+
if current_model is not None:
|
| 45 |
+
del current_model
|
| 46 |
+
current_model = None
|
| 47 |
+
if current_tokenizer is not None:
|
| 48 |
+
del current_tokenizer
|
| 49 |
+
current_tokenizer = None
|
| 50 |
+
gc.collect() # Run garbage collection
|
| 51 |
+
if device == "cuda":
|
| 52 |
+
torch.cuda.empty_cache() # Clear CUDA cache
|
| 53 |
+
|
| 54 |
+
print(f"Loading Orpheus model: {model_name_to_load}...")
|
| 55 |
+
try:
|
| 56 |
+
# Use from_pretrained which handles download and caching
|
| 57 |
+
new_model = AutoModelForCausalLM.from_pretrained(model_name_to_load, torch_dtype=dtype)
|
| 58 |
+
new_model.to(device)
|
| 59 |
+
new_tokenizer = AutoTokenizer.from_pretrained(model_name_to_load)
|
| 60 |
+
|
| 61 |
+
# Update global variables
|
| 62 |
+
current_model = new_model
|
| 63 |
+
current_tokenizer = new_tokenizer
|
| 64 |
+
current_model_name = model_name_to_load
|
| 65 |
+
|
| 66 |
+
print(f"Orpheus model {current_model_name} loaded successfully to {device}")
|
| 67 |
+
gr.Info(f"Model {current_model_name} loaded.")
|
| 68 |
+
return f"Model {current_model_name} loaded." # Return status message
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
print(f"Error loading model {model_name_to_load}: {e}")
|
| 72 |
+
# Reset globals if loading fails
|
| 73 |
+
current_model = None
|
| 74 |
+
current_tokenizer = None
|
| 75 |
+
current_model_name = None
|
| 76 |
+
gr.Warning(f"Failed to load model {model_name_to_load}. Please try again or select another model.")
|
| 77 |
+
return f"Error loading {model_name_to_load}." # Return status message
|
| 78 |
+
# --- End Model Loading Function ---
|
| 79 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
+
# Process text prompt (Uses global tokenizer now)
|
| 82 |
+
def process_prompt(prompt, voice, device):
|
| 83 |
+
if current_tokenizer is None:
|
| 84 |
+
raise ValueError("Tokenizer not loaded.")
|
| 85 |
prompt = f"{voice}: {prompt}"
|
| 86 |
+
input_ids = current_tokenizer(prompt, return_tensors="pt").input_ids
|
| 87 |
+
|
| 88 |
start_token = torch.tensor([[128259]], dtype=torch.int64) # Start of human
|
| 89 |
end_tokens = torch.tensor([[128009, 128260]], dtype=torch.int64) # End of text, End of human
|
| 90 |
+
|
| 91 |
modified_input_ids = torch.cat([start_token, input_ids, end_tokens], dim=1) # SOH SOT Text EOT EOH
|
| 92 |
+
|
|
|
|
| 93 |
attention_mask = torch.ones_like(modified_input_ids)
|
| 94 |
+
|
| 95 |
return modified_input_ids.to(device), attention_mask.to(device)
|
| 96 |
|
| 97 |
+
# Parse output tokens to audio (no change needed)
|
| 98 |
def parse_output(generated_ids):
|
| 99 |
token_to_find = 128257
|
| 100 |
token_to_remove = 128258
|
| 101 |
+
|
| 102 |
token_indices = (generated_ids == token_to_find).nonzero(as_tuple=True)
|
| 103 |
|
| 104 |
if len(token_indices[1]) > 0:
|
|
|
|
| 117 |
row_length = row.size(0)
|
| 118 |
new_length = (row_length // 7) * 7
|
| 119 |
trimmed_row = row[:new_length]
|
| 120 |
+
trimmed_row = [t - 128266 for t in trimmed_row] # Adjust based on actual token IDs if needed
|
| 121 |
code_lists.append(trimmed_row)
|
|
|
|
|
|
|
| 122 |
|
| 123 |
+
return code_lists[0] if code_lists else [] # Handle empty case
|
| 124 |
+
|
| 125 |
+
# Redistribute codes for audio generation (no change needed)
|
| 126 |
+
def redistribute_codes(code_list, snac_model_instance):
|
| 127 |
+
if not snac_model_instance or not code_list:
|
| 128 |
+
print("SNAC model not loaded or code list empty.")
|
| 129 |
+
return None
|
| 130 |
+
snac_device = next(snac_model_instance.parameters()).device
|
| 131 |
+
|
| 132 |
layer_1 = []
|
| 133 |
layer_2 = []
|
| 134 |
layer_3 = []
|
| 135 |
+
num_frames = len(code_list) // 7 # Use integer division
|
| 136 |
+
for i in range(num_frames):
|
| 137 |
layer_1.append(code_list[7*i])
|
| 138 |
layer_2.append(code_list[7*i+1]-4096)
|
| 139 |
layer_3.append(code_list[7*i+2]-(2*4096))
|
|
|
|
| 141 |
layer_2.append(code_list[7*i+4]-(4*4096))
|
| 142 |
layer_3.append(code_list[7*i+5]-(5*4096))
|
| 143 |
layer_3.append(code_list[7*i+6]-(6*4096))
|
| 144 |
+
|
| 145 |
+
if not layer_1: # Check if any codes were processed
|
| 146 |
+
print("No valid frames found in code list.")
|
| 147 |
+
return None
|
| 148 |
+
|
| 149 |
codes = [
|
| 150 |
+
torch.tensor(layer_1, device=snac_device).unsqueeze(0),
|
| 151 |
+
torch.tensor(layer_2, device=snac_device).unsqueeze(0),
|
| 152 |
+
torch.tensor(layer_3, device=snac_device).unsqueeze(0)
|
| 153 |
]
|
|
|
|
|
|
|
|
|
|
| 154 |
|
| 155 |
+
with torch.no_grad():
|
| 156 |
+
audio_hat = snac_model_instance.decode(codes)
|
| 157 |
+
return audio_hat.detach().squeeze().cpu().numpy()
|
| 158 |
+
|
| 159 |
+
|
| 160 |
+
# Main generation function (Uses global model now)
|
| 161 |
@spaces.GPU()
|
| 162 |
+
def generate_speech(text, voice, temperature, top_p, repetition_penalty, max_new_tokens, progress=gr.Progress(track_tqdm=True)):
|
| 163 |
+
global current_model, device # Access globals
|
| 164 |
+
|
| 165 |
+
if current_model is None or current_tokenizer is None:
|
| 166 |
+
gr.Warning("Orpheus model not loaded. Please select a model and wait for it to load.")
|
| 167 |
+
return None
|
| 168 |
+
if snac_model is None:
|
| 169 |
+
gr.Warning("SNAC vocoder model failed to load. Cannot generate audio.")
|
| 170 |
+
return None
|
| 171 |
if not text.strip():
|
| 172 |
+
gr.Info("Please enter some text.")
|
| 173 |
return None
|
| 174 |
+
|
| 175 |
try:
|
| 176 |
progress(0.1, "Processing text...")
|
| 177 |
+
input_ids, attention_mask = process_prompt(text, voice, device)
|
| 178 |
+
|
| 179 |
progress(0.3, "Generating speech tokens...")
|
| 180 |
with torch.no_grad():
|
| 181 |
+
# Make sure generation parameters are appropriate
|
| 182 |
+
generated_ids = current_model.generate(
|
| 183 |
input_ids=input_ids,
|
| 184 |
attention_mask=attention_mask,
|
| 185 |
max_new_tokens=max_new_tokens,
|
| 186 |
do_sample=True,
|
| 187 |
+
temperature=max(temperature, 0.01), # Ensure temp is not zero
|
| 188 |
top_p=top_p,
|
| 189 |
repetition_penalty=repetition_penalty,
|
| 190 |
num_return_sequences=1,
|
| 191 |
+
eos_token_id=128258, # Make sure this is correct for the models
|
| 192 |
+
pad_token_id=current_tokenizer.pad_token_id if current_tokenizer.pad_token_id is not None else current_tokenizer.eos_token_id # Use tokenizer's pad/eos token
|
| 193 |
)
|
| 194 |
+
|
| 195 |
progress(0.6, "Processing speech tokens...")
|
| 196 |
code_list = parse_output(generated_ids)
|
| 197 |
+
|
| 198 |
progress(0.8, "Converting to audio...")
|
| 199 |
audio_samples = redistribute_codes(code_list, snac_model)
|
| 200 |
+
|
| 201 |
+
if audio_samples is None:
|
| 202 |
+
gr.Warning("Failed to generate audio samples.")
|
| 203 |
+
return None
|
| 204 |
+
|
| 205 |
return (24000, audio_samples) # Return sample rate and audio
|
| 206 |
except Exception as e:
|
| 207 |
print(f"Error generating speech: {e}")
|
| 208 |
+
import traceback
|
| 209 |
+
traceback.print_exc() # Print full traceback for debugging
|
| 210 |
+
gr.Error(f"An error occurred during generation: {e}")
|
| 211 |
return None
|
| 212 |
|
| 213 |
+
# --- Load Default Model at Startup ---
|
| 214 |
+
# Moved initial loading to happen *before* launching the UI
|
| 215 |
+
# This ensures a model is ready when the interface appears.
|
| 216 |
+
print("Loading default model...")
|
| 217 |
+
initial_status = load_model_and_tokenizer(default_model_name)
|
| 218 |
+
print(initial_status)
|
| 219 |
+
# --- End Load Default Model ---
|
| 220 |
+
|
| 221 |
# Examples for the UI
|
| 222 |
examples = [
|
| 223 |
+
# Examples might need adjusting if voices/behavior differ between models
|
| 224 |
+
["السلام عليكم كيف حالكم اليوم؟", "tara", 0.6, 0.95, 1.1, 1200],
|
| 225 |
+
["أنا نموذج لتحويل النص إلى كلام يمكنه التحدث باللغة العربية.", "dan", 0.7, 0.95, 1.1, 1200],
|
| 226 |
+
# ["I live in San Francisco, and have, uhm let's see, 3 billion 7 hundred ... well, lets just say a lot of parameters.", "emma", 0.6, 0.9, 1.2, 1200] # Keep or remove English examples
|
| 227 |
]
|
| 228 |
|
| 229 |
+
# Available voices (Might need updating based on your fine-tuned models)
|
| 230 |
+
# You might need different voice lists per model, or just use 'tara'/'dan' if they exist in both
|
| 231 |
+
VOICES = ["tara", "dan", "josh", "emma"] # Adjust as needed
|
| 232 |
|
| 233 |
# Create Gradio interface
|
| 234 |
with gr.Blocks(title="Orpheus Text-to-Speech") as demo:
|
| 235 |
gr.Markdown("""
|
| 236 |
+
# 🎵 Orpheus Text-to-Speech (Arabic Fine-tuned)
|
| 237 |
+
Enter your text below and hear it converted to natural-sounding speech.
|
| 238 |
+
Select the desired fine-tuned model below.
|
| 239 |
+
""")
|
| 240 |
+
|
| 241 |
+
with gr.Row():
|
| 242 |
+
# Model Selection Dropdown
|
| 243 |
+
model_selector = gr.Dropdown(
|
| 244 |
+
choices=model_choices,
|
| 245 |
+
value=current_model_name, # Default to the loaded model
|
| 246 |
+
label="Select Fine-Tuned Model",
|
| 247 |
+
interactive=True
|
| 248 |
+
)
|
| 249 |
+
# Status Textbox (Optional)
|
| 250 |
+
status_display = gr.Textbox(label="Model Status", value=initial_status, interactive=False)
|
| 251 |
+
|
| 252 |
+
|
| 253 |
with gr.Row():
|
| 254 |
with gr.Column(scale=3):
|
| 255 |
text_input = gr.Textbox(
|
| 256 |
+
label="Text to speak (النص)",
|
| 257 |
+
placeholder="أدخل النص هنا...",
|
| 258 |
+
lines=5,
|
| 259 |
+
text_align="right" # Align text right for Arabic
|
| 260 |
)
|
| 261 |
voice = gr.Dropdown(
|
| 262 |
+
choices=VOICES,
|
| 263 |
+
value="tara", # Default voice
|
| 264 |
+
label="Voice (الصوت)"
|
| 265 |
)
|
| 266 |
+
|
| 267 |
+
with gr.Accordion("Advanced Settings (إعدادات متقدمة)", open=False):
|
| 268 |
temperature = gr.Slider(
|
| 269 |
minimum=0.1, maximum=1.5, value=0.6, step=0.05,
|
| 270 |
+
label="Temperature (درجة الحرارة)",
|
| 271 |
info="Higher values (0.7-1.0) create more expressive but less stable speech"
|
| 272 |
)
|
| 273 |
top_p = gr.Slider(
|
| 274 |
minimum=0.1, maximum=1.0, value=0.95, step=0.05,
|
| 275 |
+
label="Top P",
|
| 276 |
info="Nucleus sampling threshold"
|
| 277 |
)
|
| 278 |
repetition_penalty = gr.Slider(
|
| 279 |
minimum=1.0, maximum=2.0, value=1.1, step=0.05,
|
| 280 |
+
label="Repetition Penalty (عقوبة التكرار)",
|
| 281 |
info="Higher values discourage repetitive patterns"
|
| 282 |
)
|
| 283 |
max_new_tokens = gr.Slider(
|
| 284 |
minimum=100, maximum=2000, value=1200, step=100,
|
| 285 |
+
label="Max Length (الطول الأقصى)",
|
| 286 |
info="Maximum length of generated audio (in tokens)"
|
| 287 |
)
|
| 288 |
+
|
| 289 |
with gr.Row():
|
| 290 |
+
submit_btn = gr.Button("Generate Speech (توليد الكلام)", variant="primary")
|
| 291 |
+
clear_btn = gr.Button("Clear (مسح)")
|
| 292 |
+
|
| 293 |
with gr.Column(scale=2):
|
| 294 |
+
audio_output = gr.Audio(label="Generated Speech (الكلام المولّد)", type="numpy")
|
| 295 |
+
|
| 296 |
# Set up examples
|
| 297 |
gr.Examples(
|
| 298 |
examples=examples,
|
| 299 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 300 |
outputs=audio_output,
|
| 301 |
+
fn=generate_speech, # Function to call for examples
|
| 302 |
+
cache_examples=False, # Disable caching if models change behavior
|
| 303 |
+
)
|
| 304 |
+
|
| 305 |
+
# --- Event Handlers ---
|
| 306 |
+
# Trigger model loading when dropdown changes
|
| 307 |
+
model_selector.change(
|
| 308 |
+
fn=load_model_and_tokenizer,
|
| 309 |
+
inputs=[model_selector],
|
| 310 |
+
outputs=[status_display] # Update status display
|
| 311 |
)
|
| 312 |
+
|
| 313 |
+
# Generate speech button click
|
| 314 |
submit_btn.click(
|
| 315 |
fn=generate_speech,
|
| 316 |
inputs=[text_input, voice, temperature, top_p, repetition_penalty, max_new_tokens],
|
| 317 |
outputs=audio_output
|
| 318 |
)
|
| 319 |
+
|
| 320 |
+
# Clear button click
|
| 321 |
clear_btn.click(
|
| 322 |
fn=lambda: (None, None),
|
| 323 |
inputs=[],
|
| 324 |
outputs=[text_input, audio_output]
|
| 325 |
)
|
| 326 |
+
# --- End Event Handlers ---
|
| 327 |
|
| 328 |
# Launch the app
|
| 329 |
if __name__ == "__main__":
|
| 330 |
+
demo.queue().launch(share=False) # Removed ssr_mode=False, queue is usually enough
|