File size: 17,102 Bytes
11b119e
da5e325
1889706
11b119e
1889706
 
 
 
11b119e
c499701
1889706
ffcc265
a252b0c
da5e325
 
 
 
 
 
 
 
 
 
 
 
 
 
8c225c3
 
 
 
 
 
 
 
 
 
 
81535ba
 
 
 
 
 
11b119e
81535ba
 
1889706
81535ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
81535ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
81535ba
 
 
 
 
 
 
 
 
 
11b119e
81535ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a252b0c
81535ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a252b0c
81535ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1889706
81535ba
 
 
 
 
 
 
 
 
1889706
81535ba
 
 
 
 
 
 
1889706
81535ba
c499701
 
 
11b119e
 
 
 
 
 
 
 
 
 
 
 
 
 
d560a5c
 
 
 
 
 
 
 
 
 
11b119e
 
1889706
 
d560a5c
11b119e
1889706
 
 
 
 
 
 
5269c48
1889706
 
d560a5c
 
 
 
1889706
 
 
 
 
 
81535ba
1889706
d560a5c
1889706
11b119e
 
 
 
 
 
 
 
 
 
 
 
 
 
a252b0c
c499701
11b119e
c499701
11b119e
 
c499701
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
import shutil
import subprocess
import time
from pathlib import Path
from typing import Tuple

import gradio as gr
import lightning as L
import spaces
import torch
import yaml
from box import Box

# Get the PyTorch and CUDA versions
torch_version = torch.__version__.split("+")[0]  # Strips any "+cuXXX" suffix
cuda_version = torch.version.cuda
spconv_version = "-cu121" if cuda_version else "" 

# Format CUDA version to match the URL convention (e.g., "cu118" for CUDA 11.8)
if cuda_version:
    cuda_version = f"cu{cuda_version.replace('.', '')}"
else:
    cuda_version = "cpu"  # Fallback in case CUDA is not available

subprocess.run(f'pip install spconv{spconv_version}', shell=True)
subprocess.run(f'pip install torch_scatter torch_cluster -f https://data.pyg.org/whl/torch-{torch_version}+{cuda_version}.html --no-cache-dir', shell=True)

from src.data.datapath import Datapath
from src.data.dataset import DatasetConfig, UniRigDatasetModule
from src.data.extract import extract_builtin, get_files
from src.data.transform import TransformConfig
from src.inference.download import download
from src.model.parse import get_model
from src.system.parse import get_system, get_writer
from src.tokenizer.parse import get_tokenizer
from src.tokenizer.spec import TokenizerConfig


# Helper functions
def validate_input_file(file_path: str) -> bool:
    """Validate if the input file format is supported."""
    supported_formats = ['.obj', '.fbx', '.glb']
    if not file_path or not Path(file_path).exists():
        return False
    
    file_ext = Path(file_path).suffix.lower()
    return file_ext in supported_formats

def extract_mesh_python(input_file: str, output_dir: str) -> str:
    """
    Extract mesh data from 3D model using Python (replaces extract.sh)
    Returns path to generated .npz file
    """
    # Import required modules
    
    # Create extraction parameters
    files = get_files(
        data_name="raw_data.npz",
        inputs=str(input_file),
        input_dataset_dir=None,
        output_dataset_dir=output_dir,
        force_override=True,
        warning=False,
    )
    
    if not files:
        raise RuntimeError("No files to extract")
    
    # Run the actual extraction
    timestamp = str(int(time.time()))
    extract_builtin(
        output_folder=output_dir,
        target_count=50000,
        num_runs=1,
        id=0,
        time=timestamp,
        files=files,
    )
    
    # Return the directory path where raw_data.npz was created
    # The dataset expects to find raw_data.npz in this directory
    expected_npz_dir = files[0][1]  # This is the output directory
    expected_npz_file = Path(expected_npz_dir) / "raw_data.npz"
    
    if not expected_npz_file.exists():
        raise RuntimeError(f"Extraction failed: {expected_npz_file} not found")
    
    return expected_npz_dir  # Return the directory containing raw_data.npz

def run_skeleton_inference_python(input_file: str, output_file: str, seed: int = 12345) -> str:
    """
    Run skeleton inference using Python (replaces skeleton part of generate_skeleton.sh)
    Returns path to skeleton FBX file
    """
    
    # Set random seed
    L.seed_everything(seed, workers=True)
    
    # Load task configuration
    task_config_path = "configs/task/quick_inference_skeleton_articulationxl_ar_256.yaml"
    if not Path(task_config_path).exists():
        raise FileNotFoundError(f"Task configuration file not found: {task_config_path}")
    
    # Load the task configuration
    with open(task_config_path, 'r') as f:
        task = Box(yaml.safe_load(f))
    
    # Create temporary npz directory
    npz_dir = Path(output_file).parent / "npz"
    npz_dir.mkdir(exist_ok=True)
    
    # Extract mesh data
    npz_data_dir = extract_mesh_python(input_file, npz_dir)
    
    # Setup datapath with the directory containing raw_data.npz
    datapath = Datapath(files=[npz_data_dir], cls=None)
    
    # Load configurations
    data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
    transform_config = Box(yaml.safe_load(open("configs/transform/inference_ar_transform.yaml", 'r')))
    
    # Get tokenizer
    tokenizer_config = TokenizerConfig.parse(config=Box(yaml.safe_load(open("configs/tokenizer/tokenizer_parts_articulationxl_256.yaml", 'r'))))
    tokenizer = get_tokenizer(config=tokenizer_config)
    
    # Get model
    model_config = Box(yaml.safe_load(open("configs/model/unirig_ar_350m_1024_81920_float32.yaml", 'r')))
    model = get_model(tokenizer=tokenizer, **model_config)
    
    # Setup datasets and transforms
    predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
    predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
    
    # Create data module
    data = UniRigDatasetModule(
        process_fn=model._process_fn,
        predict_dataset_config=predict_dataset_config,
        predict_transform_config=predict_transform_config,
        tokenizer_config=tokenizer_config,
        debug=False,
        data_name="raw_data.npz",
        datapath=datapath,
        cls=None,
    )
    
    # Setup callbacks and writer
    callbacks = []
    writer_config = task.writer.copy()
    writer_config['npz_dir'] = str(npz_dir)
    writer_config['output_dir'] = str(Path(output_file).parent)
    writer_config['output_name'] = Path(output_file).name
    writer_config['user_mode'] = False  # Set to False to enable NPZ export
    print(f"Writer config: {writer_config}")
    # But we want the FBX to go to our specified location when in user mode for FBX
    callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
    
    # Get system
    system_config = Box(yaml.safe_load(open("configs/system/ar_inference_articulationxl.yaml", 'r')))
    system = get_system(**system_config, model=model, steps_per_epoch=1)
    
    # Setup trainer
    trainer_config = task.trainer
    resume_from_checkpoint = download(task.resume_from_checkpoint)
    
    trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
    
    # Run prediction
    trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
    
    # The actual output file will be in a subdirectory named after the input file
    # Look for the generated skeleton.fbx file
    input_name_stem = Path(input_file).stem
    actual_output_dir = Path(output_file).parent / input_name_stem
    actual_output_file = actual_output_dir / "skeleton.fbx"
    
    if not actual_output_file.exists():
        # Try alternative locations - look for any skeleton.fbx file in the output directory
        alt_files = list(Path(output_file).parent.rglob("skeleton.fbx"))
        if alt_files:
            actual_output_file = alt_files[0]
            print(f"Found skeleton at alternative location: {actual_output_file}")
        else:
            # List all files for debugging
            all_files = list(Path(output_file).parent.rglob("*"))
            print(f"Available files: {[str(f) for f in all_files]}")
            raise RuntimeError(f"Skeleton FBX file not found. Expected at: {actual_output_file}")
    
    # Copy to the expected output location
    if actual_output_file != Path(output_file):
        shutil.copy2(actual_output_file, output_file)
        print(f"Copied skeleton from {actual_output_file} to {output_file}")
    
    print(f"Generated skeleton at: {output_file}")
    return str(output_file)

def run_skin_inference_python(skeleton_file: str, output_file: str) -> str:
    """
    Run skin inference using Python (replaces skin part of generate_skin.sh)
    Returns path to skin FBX file
    """
    
    # Load task configuration
    task_config_path = "configs/task/quick_inference_unirig_skin.yaml"
    with open(task_config_path, 'r') as f:
        task = Box(yaml.safe_load(f))
            
    # Look for files matching predict_skeleton.npz pattern recursively
    skeleton_work_dir = Path(skeleton_file).parent
    all_npz_files = list(skeleton_work_dir.rglob("**/*.npz"))
    
    # Setup datapath - need to pass the directory containing the NPZ file
    skeleton_npz_dir = all_npz_files[0].parent
    datapath = Datapath(files=[str(skeleton_npz_dir)], cls=None)
    
    # Load configurations
    data_config = Box(yaml.safe_load(open("configs/data/quick_inference.yaml", 'r')))
    transform_config = Box(yaml.safe_load(open("configs/transform/inference_skin_transform.yaml", 'r')))
    
    # Get model
    model_config = Box(yaml.safe_load(open("configs/model/unirig_skin.yaml", 'r')))
    model = get_model(tokenizer=None, **model_config)
    
    # Setup datasets and transforms
    predict_dataset_config = DatasetConfig.parse(config=data_config.predict_dataset_config).split_by_cls()
    predict_transform_config = TransformConfig.parse(config=transform_config.predict_transform_config)
    
    # Create data module
    data = UniRigDatasetModule(
        process_fn=model._process_fn,
        predict_dataset_config=predict_dataset_config,
        predict_transform_config=predict_transform_config,
        tokenizer_config=None,
        debug=False,
        data_name="predict_skeleton.npz",
        datapath=datapath,
        cls=None,
    )
    
    # Setup callbacks and writer
    callbacks = []
    writer_config = task.writer.copy()
    writer_config['npz_dir'] = str(skeleton_npz_dir)
    writer_config['output_name'] = str(output_file)
    writer_config['user_mode'] = True
    writer_config['export_fbx'] = True  # Enable FBX export
    callbacks.append(get_writer(**writer_config, order_config=predict_transform_config.order_config))
    
    # Get system
    system_config = Box(yaml.safe_load(open("configs/system/skin.yaml", 'r')))
    system = get_system(**system_config, model=model, steps_per_epoch=1)
    
    # Setup trainer
    trainer_config = task.trainer
    resume_from_checkpoint = download(task.resume_from_checkpoint)
    
    trainer = L.Trainer(callbacks=callbacks, logger=None, **trainer_config)
    
    # Run prediction
    trainer.predict(system, datamodule=data, ckpt_path=resume_from_checkpoint, return_predictions=False)
    
    # The skin FBX file should be generated with the specified output name
    # Since user_mode is True and export_fbx is True, it should create the file directly
    if not Path(output_file).exists():
        # Look for generated skin FBX files in the output directory
        skin_files = list(Path(output_file).parent.rglob("*skin*.fbx"))
        if skin_files:
            actual_output_file = skin_files[0]
            # Copy/move to the expected location
            shutil.copy2(actual_output_file, output_file)
        else:
            raise RuntimeError(f"Skin FBX file not found. Expected at: {output_file}")
    
    return str(output_file)

def merge_results_python(source_file: str, target_file: str, output_file: str) -> str:
    """
    Merge results using Python (replaces merge.sh)
    Returns path to merged file
    """
    from src.inference.merge import transfer
    
    # Validate input paths
    if not Path(source_file).exists():
        raise ValueError(f"Source file does not exist: {source_file}")
    if not Path(target_file).exists():
        raise ValueError(f"Target file does not exist: {target_file}")
    
    # Ensure output directory exists
    output_path = Path(output_file)
    output_path.parent.mkdir(parents=True, exist_ok=True)
    
    # Use the transfer function directly
    transfer(source=str(source_file), target=str(target_file), output=str(output_path), add_root=False)
    
    # Validate that the output file was created and is a valid file
    if not output_path.exists():
        raise RuntimeError(f"Merge failed: Output file not created at {output_path}")
    
    if not output_path.is_file():
        raise RuntimeError(f"Merge failed: Output path is not a valid file: {output_path}")
    
    return str(output_path.resolve())

@spaces.GPU()
def complete_pipeline(input_file: str, seed: int = 12345) -> Tuple[str, list]:
    """
    Run the complete rigging pipeline: skeleton generation β†’ skinning β†’ merge.
    
    Args:
        input_file: Path to the input 3D model file
        seed: Random seed for reproducible results
        
    Returns:
        Tuple of (final_file_path, list_of_intermediate_files)
    """
    # Create temp directory
    base_dir = Path(__file__).parent
    temp_dir = base_dir / "tmp"
    temp_dir.mkdir(exist_ok=True)
    
    # Supported file formats
    supported_formats = ['.obj', '.fbx', '.glb']
    
    # Validate input file
    if not validate_input_file(input_file):
        raise gr.Error(f"Error: Invalid or unsupported file format. Supported formats: {', '.join(supported_formats)}")
    
    # Create working directory
    file_stem = Path(input_file).stem
    input_model_dir = temp_dir / f"{file_stem}_{seed}"
    input_model_dir.mkdir(exist_ok=True)

    # Copy input file to working directory
    input_file = Path(input_file)
    shutil.copy2(input_file, input_model_dir / input_file.name)
    input_file = input_model_dir / input_file.name
    print(f"New input file path: {input_file}")
    
    # Step 1: Generate skeleton        
    output_skeleton_file = input_model_dir / f"{file_stem}_skeleton.fbx"
    run_skeleton_inference_python(input_file, output_skeleton_file, seed)        

    # Step 2: Generate skinning
    output_skin_file = input_model_dir / f"{file_stem}_skin.fbx"
    run_skin_inference_python(output_skeleton_file, output_skin_file)
    
    # Step 3: Merge results
    final_file = input_model_dir / f"{file_stem}_rigged.glb"
    merge_results_python(output_skin_file, input_file, final_file)

    return str(final_file), [str(output_skeleton_file), str(output_skin_file), str(final_file)]


def create_app():
    """Create and configure the Gradio interface."""
    
    with gr.Blocks(title="UniRig - 3D Model Rigging Demo") as interface:
        
        # Header
        gr.HTML("""
        <div class="title" style="text-align: center">
            <h1>🎯 UniRig: Automated 3D Model Rigging</h1>
            <p style="font-size: 1.1em; color: #6b7280;">
                Leverage deep learning to automatically generate skeletons and skinning weights for your 3D models
            </p>
        </div>
        """)
        
        # Usage Instructions Section
        gr.Markdown("""
        ## πŸ“‹ How to Use ?
        1. **Upload your 3D model** - Drop your .obj, .fbx, or .glb file in the upload area
        2. **Set random seed** (optional) - Use the same seed for reproducible results
        3. **Click "Start Complete Pipeline"** - The AI will automatically rig your model
        4. **Download results** - `_skeleton.fbx` is the base model with skeleton, `_skin.fbx` is the base model with armature/skeleton and skinning weights, and `_rigged.*` is the final rigged model ready for use.

        **Supported File Formats:** .obj, .fbx, .glb
        **Note:** The process may take a few minutes depending on the model complexity and server load.
        """)
        
        with gr.Row(equal_height=True):
            with gr.Column(scale=1):
                input_3d_model = gr.Model3D(label="Upload 3D Model")
                
                with gr.Row(equal_height=True):
                    seed = gr.Number(
                        value=12345,
                        label="Random Seed (for reproducible results)",
                        scale=4,
                    )
                    random_btn = gr.Button("πŸ”„ Random Seed", variant="secondary", scale=1)
                
                pipeline_btn = gr.Button("🎯 Start Complete Pipeline", variant="primary", size="lg")
            
            with gr.Column():
                pipeline_skeleton_out = gr.Model3D(label="Final Rigged Model", scale=4)
                files_to_download = gr.Files(label="Download Files", scale=1)
                   
        random_btn.click(
            fn=lambda: int(torch.randint(0, 100000, (1,)).item()),
            outputs=seed
        )
        
        pipeline_btn.click(
            fn=complete_pipeline,
            inputs=[input_3d_model, seed],
            outputs=[pipeline_skeleton_out, files_to_download]
        )
        
        # Footer
        gr.HTML("""
        <div style="text-align: center; margin-top: 2em; padding: 1em; border-radius: 8px;">
            <p style="color: #6b7280;">
                πŸ”¬ <strong>UniRig</strong> - Research by Tsinghua University & Tripo<br>
                πŸ“„ <a href="https://arxiv.org/abs/2504.12451" target="_blank">Paper</a> | 
                🏠 <a href="https://zjp-shadow.github.io/works/UniRig/" target="_blank">Project Page</a> | 
                πŸ€— <a href="https://huggingface.co/VAST-AI/UniRig" target="_blank">Models</a>
            </p>
        </div>
        """)
    
    return interface

if __name__ == "__main__":
    # Create and launch the interface
    app = create_app()
    
    # Launch configuration
    app.queue().launch()