Update app.py
Browse files
app.py
CHANGED
|
@@ -7,101 +7,117 @@ import io
|
|
| 7 |
import boto3
|
| 8 |
import json
|
| 9 |
|
| 10 |
-
|
| 11 |
bedrock_runtime = boto3.client('bedrock-runtime',
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
)
|
| 16 |
|
|
|
|
| 17 |
def construct_bedrock_body(base64_string, text):
|
| 18 |
if text:
|
| 19 |
-
return json.dumps(
|
| 20 |
-
{
|
| 21 |
-
"inputImage": base64_string,
|
| 22 |
-
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
| 23 |
-
"inputText": text
|
| 24 |
-
}
|
| 25 |
-
)
|
| 26 |
-
|
| 27 |
-
return json.dumps(
|
| 28 |
-
{
|
| 29 |
"inputImage": base64_string,
|
| 30 |
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
def get_embedding_from_titan_multimodal(body):
|
| 36 |
-
|
| 37 |
-
|
| 38 |
response = bedrock_runtime.invoke_model(
|
| 39 |
body=body,
|
| 40 |
modelId="amazon.titan-embed-image-v1",
|
| 41 |
accept="application/json",
|
| 42 |
contentType="application/json",
|
| 43 |
)
|
| 44 |
-
|
| 45 |
response_body = json.loads(response.get("body").read())
|
| 46 |
return response_body["embedding"]
|
| 47 |
|
|
|
|
| 48 |
uri = os.environ.get('MONGODB_ATLAS_URI')
|
| 49 |
client = MongoClient(uri)
|
| 50 |
db_name = 'celebrity_1000_embeddings'
|
| 51 |
collection_name = 'celeb_images'
|
| 52 |
-
|
| 53 |
celeb_images = client[db_name][collection_name]
|
| 54 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def start_image_search(image, text):
|
| 56 |
if not image:
|
| 57 |
-
## Alert the user to upload an image
|
| 58 |
raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
|
| 59 |
buffered = io.BytesIO()
|
| 60 |
image = image.resize((800, 600))
|
| 61 |
-
image.save(buffered, format="JPEG", quality=85)
|
| 62 |
img_byte = buffered.getvalue()
|
| 63 |
-
# Encode this byte array to Base64
|
| 64 |
img_base64 = base64.b64encode(img_byte)
|
| 65 |
-
|
| 66 |
-
# Convert Base64 bytes to string for JSON serialization
|
| 67 |
img_base64_str = img_base64.decode('utf-8')
|
| 68 |
body = construct_bedrock_body(img_base64_str, text)
|
| 69 |
embedding = get_embedding_from_titan_multimodal(body)
|
| 70 |
|
| 71 |
-
doc =
|
| 72 |
-
|
| 73 |
-
"
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
|
| 81 |
-
for
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
|
|
|
|
|
|
|
|
|
|
| 85 |
|
|
|
|
|
|
|
|
|
|
| 86 |
with gr.Blocks() as demo:
|
| 87 |
-
gr.Markdown(
|
| 88 |
-
|
| 89 |
-
# MongoDB's Vector Celeb Image matcher
|
| 90 |
|
| 91 |
-
Upload an image and find the most similar celeb image from the database.
|
| 92 |
|
| 93 |
💪 Make a great pose to impact the search! 🤯
|
| 94 |
-
|
| 95 |
""")
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
inputs=[gr.Image(type="pil", label="Upload an image"),gr.Textbox(label="Enter an adjusment to the image")],
|
| 101 |
-
## outputs=gr.Image(type="pil")
|
| 102 |
-
outputs=gr.Gallery(
|
| 103 |
-
label="Located images", show_label=True, elem_id="gallery"
|
| 104 |
-
, columns=[3], rows=[1], object_fit="contain", height="auto")
|
| 105 |
)
|
| 106 |
|
| 107 |
demo.launch()
|
|
|
|
| 7 |
import boto3
|
| 8 |
import json
|
| 9 |
|
| 10 |
+
# AWS Bedrock client setup
|
| 11 |
bedrock_runtime = boto3.client('bedrock-runtime',
|
| 12 |
+
aws_access_key_id=os.environ.get('AWS_ACCESS_KEY'),
|
| 13 |
+
aws_secret_access_key=os.environ.get('AWS_SECRET_KEY'),
|
| 14 |
+
region_name="us-east-1")
|
|
|
|
| 15 |
|
| 16 |
+
# Function to construct the request body for Bedrock
|
| 17 |
def construct_bedrock_body(base64_string, text):
|
| 18 |
if text:
|
| 19 |
+
return json.dumps({
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
"inputImage": base64_string,
|
| 21 |
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
| 22 |
+
"inputText": text
|
| 23 |
+
})
|
| 24 |
+
return json.dumps({
|
| 25 |
+
"inputImage": base64_string,
|
| 26 |
+
"embeddingConfig": {"outputEmbeddingLength": 1024},
|
| 27 |
+
})
|
| 28 |
+
|
| 29 |
+
# Function to get the embedding from Bedrock model
|
| 30 |
def get_embedding_from_titan_multimodal(body):
|
|
|
|
|
|
|
| 31 |
response = bedrock_runtime.invoke_model(
|
| 32 |
body=body,
|
| 33 |
modelId="amazon.titan-embed-image-v1",
|
| 34 |
accept="application/json",
|
| 35 |
contentType="application/json",
|
| 36 |
)
|
|
|
|
| 37 |
response_body = json.loads(response.get("body").read())
|
| 38 |
return response_body["embedding"]
|
| 39 |
|
| 40 |
+
# MongoDB setup
|
| 41 |
uri = os.environ.get('MONGODB_ATLAS_URI')
|
| 42 |
client = MongoClient(uri)
|
| 43 |
db_name = 'celebrity_1000_embeddings'
|
| 44 |
collection_name = 'celeb_images'
|
|
|
|
| 45 |
celeb_images = client[db_name][collection_name]
|
| 46 |
|
| 47 |
+
# Function to generate image description using Claude 3 Sonnet
|
| 48 |
+
def generate_image_description_with_claude(image_base64):
|
| 49 |
+
claude_body = json.dumps({
|
| 50 |
+
"anthropic_version": "bedrock-2023-05-31",
|
| 51 |
+
"max_tokens": 1000,
|
| 52 |
+
"system": "Please respond only in Spanish.",
|
| 53 |
+
"messages": [{
|
| 54 |
+
"role": "user",
|
| 55 |
+
"content": [
|
| 56 |
+
{"type": "image", "source": {"type": "base64", "media_type": "image/jpeg", "data": image_base64}},
|
| 57 |
+
{"type": "text", "text": "What's in this image?"}
|
| 58 |
+
]
|
| 59 |
+
}]
|
| 60 |
+
})
|
| 61 |
+
|
| 62 |
+
claude_response = bedrock_runtime.invoke_model(
|
| 63 |
+
body=claude_body,
|
| 64 |
+
modelId="anthropic.claude-3-sonnet-v1:0",
|
| 65 |
+
accept="application/json",
|
| 66 |
+
contentType="application/json",
|
| 67 |
+
)
|
| 68 |
+
response_body = json.loads(claude_response.get("body").read())
|
| 69 |
+
# Assuming the response contains a field 'content' with the description
|
| 70 |
+
return response_body["messages"][0]["content"][0].get("text", "No description available")
|
| 71 |
+
|
| 72 |
+
# Main function to start image search
|
| 73 |
def start_image_search(image, text):
|
| 74 |
if not image:
|
|
|
|
| 75 |
raise gr.Error("Please upload an image first, make sure to press the 'Submit' button after selecting the image.")
|
| 76 |
buffered = io.BytesIO()
|
| 77 |
image = image.resize((800, 600))
|
| 78 |
+
image.save(buffered, format="JPEG", quality=85)
|
| 79 |
img_byte = buffered.getvalue()
|
|
|
|
| 80 |
img_base64 = base64.b64encode(img_byte)
|
|
|
|
|
|
|
| 81 |
img_base64_str = img_base64.decode('utf-8')
|
| 82 |
body = construct_bedrock_body(img_base64_str, text)
|
| 83 |
embedding = get_embedding_from_titan_multimodal(body)
|
| 84 |
|
| 85 |
+
doc = list(celeb_images.aggregate([
|
| 86 |
+
{
|
| 87 |
+
"$vectorSearch": {
|
| 88 |
+
"index": "vector_index",
|
| 89 |
+
"path": "embeddings",
|
| 90 |
+
"queryVector": embedding,
|
| 91 |
+
"numCandidates": 15,
|
| 92 |
+
"limit": 3
|
| 93 |
+
}
|
| 94 |
+
}, {"$project": {"image": 1}}
|
| 95 |
+
]))
|
| 96 |
|
| 97 |
+
images_with_descriptions = []
|
| 98 |
+
for image_doc in doc:
|
| 99 |
+
pil_image = Image.open(io.BytesIO(base64.b64decode(image_doc['image'])))
|
| 100 |
+
img_byte = io.BytesIO()
|
| 101 |
+
pil_image.save(img_byte, format='JPEG')
|
| 102 |
+
img_base64 = base64.b64encode(img_byte.getvalue()).decode('utf-8')
|
| 103 |
+
description = generate_image_description_with_claude(img_base64)
|
| 104 |
+
images_with_descriptions.append((pil_image, description))
|
| 105 |
|
| 106 |
+
return images_with_descriptions
|
| 107 |
+
|
| 108 |
+
# Gradio Interface
|
| 109 |
with gr.Blocks() as demo:
|
| 110 |
+
gr.Markdown("""
|
| 111 |
+
# MongoDB's Vector Celeb Image Matcher
|
|
|
|
| 112 |
|
| 113 |
+
Upload an image and find the most similar celeb image from the database, along with an AI-generated description.
|
| 114 |
|
| 115 |
💪 Make a great pose to impact the search! 🤯
|
|
|
|
| 116 |
""")
|
| 117 |
+
gr.Interface(fn=start_image_search,
|
| 118 |
+
inputs=[gr.Image(type="pil", label="Upload an image"), gr.Textbox(label="Enter an adjustment to the image")],
|
| 119 |
+
outputs=gr.Gallery(label="Located images with AI-generated descriptions", show_label=True, elem_id="gallery",
|
| 120 |
+
columns=[3], rows=[1], object_fit="contain", height="auto")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
)
|
| 122 |
|
| 123 |
demo.launch()
|